Data-Driven Nonparametric Likelihood Functions

John Harlim
Department of Mathematics
Department of Meteorology \& Atmospheric Science Institute of CyberScience.
The Pennsylvania State University

March 19, 2019

Plan of the talk:

- A quick review of kernel embedding of conditional distribution.
- A Bayesian Inference application: Parameter estimation.
- A data assimilation application: An online estimation of observation model error.

Kernel embedding of conditional distribution

Let $L^{2}(\mathcal{N}, \tilde{q})$ denotes an RKHS with kernel $\tilde{K}: \mathcal{N} \times \mathcal{N} \rightarrow \mathbb{R}$,

$$
g(y)=\langle g, \tilde{K}(y, \cdot)\rangle_{\tilde{q}}
$$

for all $g \in L^{2}(\mathcal{N}, \tilde{q})$ and $y \in \mathcal{N}$.

Kernel embedding of conditional distribution

Let $L^{2}(\mathcal{N}, \tilde{q})$ denotes an RKHS with kernel $\tilde{K}: \mathcal{N} \times \mathcal{N} \rightarrow \mathbb{R}$,

$$
g(y)=\langle g, \tilde{K}(y, \cdot)\rangle_{\tilde{q}},
$$

for all $g \in L^{2}(\mathcal{N}, \tilde{q})$ and $y \in \mathcal{N}$.
Let $P(Y \mid \Theta)$ be distribution of random variable Y defined on \mathcal{N}. The kernel embedding of conditional distribution $P(Y \mid \Theta)$ is defined as,

$$
\mu_{Y \mid \theta}:=\mathbb{E}_{Y \mid \theta}[\tilde{K}(Y, \cdot)]=\int_{\mathcal{N}} \tilde{K}(y, \cdot) d P(y \mid \theta) .
$$

Kernel embedding of conditional distribution

Let $L^{2}(\mathcal{N}, \tilde{q})$ denotes an RKHS with kernel $\tilde{K}: \mathcal{N} \times \mathcal{N} \rightarrow \mathbb{R}$,

$$
g(y)=\langle g, \tilde{K}(y, \cdot)\rangle_{\tilde{q}},
$$

for all $g \in L^{2}(\mathcal{N}, \tilde{q})$ and $y \in \mathcal{N}$.
Let $P(Y \mid \Theta)$ be distribution of random variable Y defined on \mathcal{N}. The kernel embedding of conditional distribution $P(Y \mid \Theta)$ is defined as,

$$
\mu_{Y \mid \theta}:=\mathbb{E}_{Y \mid \theta}[\tilde{K}(Y, \cdot)]=\int_{\mathcal{N}} \tilde{K}(y, \cdot) d P(y \mid \theta) .
$$

Given $g \in L^{2}(\mathcal{N}, \tilde{q})$,

$$
\begin{aligned}
\mathbb{E}_{Y \mid \theta}[g(Y)] & =\int_{\mathcal{N}} g(y) d P(y \mid \theta)=\int_{\mathcal{N}}\langle g, \tilde{K}(y, \cdot)\rangle_{\tilde{q}} d P(y \mid \theta) \\
& =\left\langle g, \int_{\mathcal{N}} \tilde{K}(y, \cdot) d P(y \mid \theta)\right\rangle_{\tilde{q}}=\left\langle g, \mu_{Y \mid \theta}\right\rangle_{\tilde{q}} .
\end{aligned}
$$

Kernel embedding of conditional distribution

One can verify ${ }^{1}$ that

$$
\mu_{Y \mid \theta}=q \mathcal{C}_{Y \Theta} \mathcal{C}_{\Theta \Theta}^{-1} K(\theta, \cdot)
$$

where

$$
\mathcal{C}_{\Theta Y}=\int_{\mathcal{M} \times \mathcal{N}} K(\theta, \cdot) \otimes \tilde{K}(y, \cdot) d P(\theta, y)
$$

is the kernel embedding of $P(\Theta, Y)$ on appropriate Hilbert spaces and $K: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ is the kernel of $\operatorname{RKHS} L^{2}(\mathcal{M}, q)$.

Nonparametric likelihood functions

Let $\varphi_{j}(\theta) \in L^{2}(\mathcal{M}, q)$ and $\psi_{k}(y) \in L^{2}(\mathcal{N}, \tilde{q})$ be the, respective, orthonormal bases. It is clear that

$$
K(\theta, \tilde{\theta})=\sum_{k}\left\langle K(\theta, \cdot), \varphi_{j}\right\rangle \varphi_{j}(\tilde{\theta})=\sum_{k} \varphi_{j}(\theta) \varphi_{j}(\tilde{\theta})
$$

Let

$$
\begin{aligned}
& p(y \mid \theta)=\sum_{k} \mu_{Y \mid \theta, k} \psi_{k}(y) \tilde{q}(y) \\
& \mu_{Y \mid \theta, k}=\left\langle p(\cdot \mid \theta), \psi_{k}\right\rangle=\mathbb{E}_{Y \mid \theta}\left[\psi_{k}\right]=\left\langle\mu_{Y \mid \theta}, \psi_{k}\right\rangle_{\tilde{q}} \\
&=\left\langle q \mathcal{C}_{Y \Theta} \mathcal{C}_{\Theta \Theta}^{-1} K(\theta, \cdot), \psi_{k}\right\rangle_{\tilde{q}} \\
&=\sum_{j} \varphi_{j}(\theta)\left\langle q \mathcal{C}_{Y \Theta} \mathcal{C}_{\Theta \Theta}^{-1} \varphi_{j}, \psi_{k}\right\rangle_{\tilde{q}} \\
&=\sum_{j} \varphi_{j}(\theta)\left\langle\mathcal{C}_{Y \Theta} \mathcal{C}_{\Theta \Theta}^{-1}, \varphi_{j} \otimes \psi_{k}\right\rangle_{q \otimes \tilde{q}}
\end{aligned}
$$

Nonparametric likelihood functions

Let

$$
\begin{aligned}
{\left[C_{Y \Theta}\right]_{j k} } & =\left\langle\mathcal{C}_{Y \Theta}, \psi_{j} \otimes \varphi_{k}\right\rangle_{\tilde{q} \otimes a} \\
{\left[C_{\Theta \Theta}\right]_{j k} } & =\left\langle\mathcal{C}_{\Theta \Theta}, \varphi_{j} \varphi_{k}\right\rangle_{q}
\end{aligned}
$$

Then one can show that,

$$
\begin{aligned}
{\left[C_{Y \Theta} C_{\Theta \Theta}^{-1}\right]_{k j} } & =\sum_{\ell}\left[C_{Y \Theta}\right]_{k \ell}\left[C_{\Theta \Theta}\right]_{\ell j}^{-1} \\
& =\sum_{\ell}\left\langle\mathcal{C}_{Y \Theta}, \psi_{k} \otimes \varphi_{\ell}\right\rangle_{\tilde{q} \otimes q}\left\langle\mathcal{C}_{\Theta \Theta}^{-1}, \varphi_{\ell} \varphi_{j}\right\rangle_{q} \\
& =\left\langle\mathcal{C}_{Y \Theta}, \psi_{k} \otimes\left(\sum_{\ell}\left\langle\mathcal{C}_{\Theta \Theta}^{-1}, \varphi_{\ell} \varphi_{j}\right\rangle_{q} \varphi_{\ell}\right)\right\rangle_{\tilde{q} \otimes q} \\
& =\left\langle\mathcal{C}_{Y \Theta}, \psi_{k} \otimes \mathcal{C}_{\Theta \Theta}^{-1} \varphi_{j}\right\rangle_{\tilde{q} \otimes q} \\
& =\left\langle\mathcal{C}_{Y \Theta} \mathcal{C}_{\Theta \Theta}^{-1}, \psi_{k} \otimes \varphi_{j}\right\rangle_{\tilde{q} \otimes q}
\end{aligned}
$$

Thus, the expansion coefficient is given as,

$$
\mu_{Y \mid \theta, k}=\sum_{j} \varphi_{j}(\theta)\left[C_{Y \Theta} C_{\Theta \Theta}^{-1}\right]_{k j} .
$$

Nonparametric likelihood functions

To summarize, let $\varphi_{j}(\theta) \in L^{2}(\mathcal{M}, q)$ and $\psi_{k}(y) \in L^{2}(\mathcal{N}, \tilde{q})$ be the, respective, orthonormal bases. Then,

$$
p(y \mid \theta)=\sum_{k, j} \varphi_{j}(\theta)\left[C_{Y \Theta} C_{\Theta \Theta}^{-1}\right]_{k j} \psi_{k}(y) \tilde{q}(y)
$$

where,

$$
\begin{aligned}
& {\left[C_{Y \Theta}\right]_{j k}=\left\langle\mathcal{C}_{Y \Theta}, \psi_{j} \otimes \varphi_{k}\right\rangle_{\tilde{q} \otimes q}=\mathbb{E}_{Y \Theta}\left[\psi_{j} \otimes \varphi_{k}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \tilde{\varphi}_{j}\left(y_{i}\right) \varphi_{k}\left(\theta_{i}\right),} \\
& {\left[C_{\Theta \Theta}\right]_{j k}=\left\langle\mathcal{C}_{\Theta \Theta}, \varphi_{j} \varphi_{k}\right\rangle_{q}=\mathbb{E}_{\Theta \Theta}\left[\varphi_{j} \varphi_{k}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \varphi_{j}\left(\theta_{i}\right) \varphi_{k}\left(\theta_{i}\right)}
\end{aligned}
$$

Remarks:

Nonparametric likelihood functions

To summarize, let $\varphi_{j}(\theta) \in L^{2}(\mathcal{M}, q)$ and $\psi_{k}(y) \in L^{2}(\mathcal{N}, \tilde{q})$ be the, respective, orthonormal bases. Then,

$$
p(y \mid \theta)=\sum_{k, j} \varphi_{j}(\theta)\left[C_{Y \Theta} C_{\Theta \Theta}^{-1}\right]_{k j} \psi_{k}(y) \tilde{q}(y)
$$

where,

$$
\begin{aligned}
& {\left[C_{Y \Theta}\right]_{j k}=\left\langle\mathcal{C}_{Y \Theta}, \psi_{j} \otimes \varphi_{k}\right\rangle_{\tilde{q} \otimes q}=\mathbb{E}_{Y \Theta}\left[\psi_{j} \otimes \varphi_{k}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \tilde{\varphi}_{j}\left(y_{i}\right) \varphi_{k}\left(\theta_{i}\right),} \\
& {\left[C_{\Theta \Theta}\right]_{j k}=\left\langle\mathcal{C}_{\Theta \Theta}, \varphi_{j} \varphi_{k}\right\rangle_{q}=\mathbb{E}_{\Theta \Theta}\left[\varphi_{j} \varphi_{k}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \varphi_{j}\left(\theta_{i}\right) \varphi_{k}\left(\theta_{i}\right)}
\end{aligned}
$$

Remarks:

- This is a linear regression in the coordinates of Hilbert spaces.

Nonparametric likelihood functions

To summarize, let $\varphi_{j}(\theta) \in L^{2}(\mathcal{M}, q)$ and $\psi_{k}(y) \in L^{2}(\mathcal{N}, \tilde{q})$ be the, respective, orthonormal bases. Then,

$$
p(y \mid \theta)=\sum_{k, j} \varphi_{j}(\theta)\left[C_{Y \Theta} C_{\Theta \Theta}^{-1}\right]_{k j} \psi_{k}(y) \tilde{q}(y)
$$

where,

$$
\begin{aligned}
& {\left[C_{Y \Theta}\right]_{j k}=\left\langle\mathcal{C}_{Y \Theta}, \psi_{j} \otimes \varphi_{k}\right\rangle_{\tilde{q} \otimes q}=\mathbb{E}_{Y \Theta}\left[\psi_{j} \otimes \varphi_{k}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \tilde{\varphi}_{j}\left(y_{i}\right) \varphi_{k}\left(\theta_{i}\right),} \\
& {\left[C_{\Theta \Theta}\right]_{j k}=\left\langle\mathcal{C}_{\Theta \Theta}, \varphi_{j} \varphi_{k}\right\rangle_{q}=\mathbb{E}_{\Theta \Theta}\left[\varphi_{j} \varphi_{k}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \varphi_{j}\left(\theta_{i}\right) \varphi_{k}\left(\theta_{i}\right)}
\end{aligned}
$$

Remarks:

- This is a linear regression in the coordinates of Hilbert spaces.
- If $\theta_{i} \sim q$, it is clear that, $C_{\Theta \Theta}=\mathcal{I}$. Otherwise, $C_{\Theta \Theta}$ can be singular.

Nonparametric likelihood functions

To summarize, let $\varphi_{j}(\theta) \in L^{2}(\mathcal{M}, q)$ and $\psi_{k}(y) \in L^{2}(\mathcal{N}, \tilde{q})$ be the, respective, orthonormal bases. Then,

$$
p(y \mid \theta)=\sum_{k, j} \varphi_{j}(\theta)\left[C_{Y \Theta} C_{\Theta \Theta}^{-1}\right]_{k j} \psi_{k}(y) \tilde{q}(y)
$$

where,

$$
\begin{aligned}
& {\left[C_{Y \Theta}\right]_{j k}=\left\langle\mathcal{C}_{Y \Theta}, \psi_{j} \otimes \varphi_{k}\right\rangle_{\tilde{q} \otimes q}=\mathbb{E}_{Y \Theta}\left[\psi_{j} \otimes \varphi_{k}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \tilde{\varphi}_{j}\left(y_{i}\right) \varphi_{k}\left(\theta_{i}\right),} \\
& {\left[C_{\Theta \Theta}\right]_{j k}=\left\langle\mathcal{C}_{\Theta \Theta}, \varphi_{j} \varphi_{k}\right\rangle_{q}=\mathbb{E}_{\Theta \Theta}\left[\varphi_{j} \varphi_{k}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \varphi_{j}\left(\theta_{i}\right) \varphi_{k}\left(\theta_{i}\right)}
\end{aligned}
$$

Remarks:

- This is a linear regression in the coordinates of Hilbert spaces.
- If $\theta_{i} \sim q$, it is clear that, $C_{\Theta \Theta}=\mathcal{I}$. Otherwise, $C_{\Theta \Theta}$ can be singular.
- Given $\theta_{i} \sim q$, DM is a natural tool that estimates $\varphi_{k} \in L^{2}(\mathcal{N}, q)$.

Parameter estimation problem

Consider

$$
\begin{aligned}
\frac{d \mathbf{x}}{d t} & =f(\mathbf{x}, \theta) \\
\mathbf{y}_{i}(\theta) & =g\left(\mathbf{x}\left(t_{i} ; \theta\right), \boldsymbol{\eta}_{\mathbf{i}}\right)
\end{aligned}
$$

and our goal is to estimate $p\left(\theta \mid \mathbf{y}^{\dagger}\right)$, given $\mathbf{y}^{\dagger}=\left\{\mathbf{y}_{1}^{\dagger}, \ldots, \mathbf{y}_{T}^{\dagger}\right\}$ are observations under a specific parameter value θ^{\dagger}.

Parameter estimation problem

Consider

$$
\begin{aligned}
\frac{d \mathbf{x}}{d t} & =f(\mathbf{x}, \theta) \\
\mathbf{y}_{i}(\theta) & =g\left(\mathbf{x}\left(t_{i} ; \theta\right), \boldsymbol{\eta}_{\mathbf{i}}\right)
\end{aligned}
$$

and our goal is to estimate $p\left(\theta \mid \mathbf{y}^{\dagger}\right)$, given $\mathbf{y}^{\dagger}=\left\{\mathbf{y}_{1}^{\dagger}, \ldots, \mathbf{y}_{T}^{\dagger}\right\}$ are observations under a specific parameter value θ^{\dagger}.

A popular Bayesian inference is to use MCMC to sample,

$$
p\left(\theta \mid \mathbf{y}^{\dagger}\right) \propto p\left(\mathbf{y}^{\dagger} \mid \theta\right) p(\theta)
$$

where $p\left(\mathbf{y}^{\dagger} \mid \theta\right)$ denotes the likelihood function corresponding to the observation model above.

Parameter estimation problem

- In most applications, the explicit expression for likelihood function is not available.
${ }^{2}$ Tavaré et al, Genetics 1997, Turner \& Van Zandt, J. Math. Psychology, 2012.

Parameter estimation problem

- In most applications, the explicit expression for likelihood function is not available.
- When $g\left(\mathbf{x}\left(t_{i} ; \theta\right), \boldsymbol{\eta}_{\mathbf{i}}\right)=h\left(\mathbf{x}\left(t_{i} ; \theta\right)\right)+, \boldsymbol{\eta}_{\mathbf{i}}$, where, $\boldsymbol{\eta}_{\mathbf{i}} \sim P\left(\eta_{i}\right)$ are i.i.d. noises, one can approximate the likelihood function as,

$$
p\left(\mathbf{y}^{\dagger} \mid \theta\right)=\prod_{i} P\left(\boldsymbol{\eta}_{i}\right)=\prod_{i} P\left(\mathbf{y}_{i}^{\dagger}-h\left(\mathbf{x}\left(t_{i} ; \theta\right)\right)\right.
$$

${ }^{2}$ Tavaré et al, Genetics 1997, Turner \& Van Zandt, J. Math. Psychology, 2012.

Parameter estimation problem

- In most applications, the explicit expression for likelihood function is not available.
-When $g\left(\mathbf{x}\left(t_{i} ; \theta\right), \boldsymbol{\eta}_{\mathbf{i}}\right)=h\left(\mathbf{x}\left(t_{i} ; \theta\right)\right)+, \boldsymbol{\eta}_{\mathbf{i}}$, where, $\boldsymbol{\eta}_{\mathbf{i}} \sim P\left(\eta_{i}\right)$ are i.i.d. noises, one can approximate the likelihood function as,

$$
p\left(\mathbf{y}^{\dagger} \mid \theta\right)=\prod_{i} P\left(\boldsymbol{\eta}_{i}\right)=\prod_{i} P\left(\mathbf{y}_{i}^{\dagger}-h\left(\mathbf{x}\left(t_{i} ; \theta\right)\right)\right.
$$

- In the case where the evaluation of $p\left(\mathbf{y}^{\dagger} \mid \theta\right)$ is computationally feasible, one can apply direct MCMC (if the likelihood or approximate likelihood is available).
${ }^{2}$ Tavaré et al, Genetics 1997, Turner \& Van Zandt, J. Math. Psychology, 2012.

Parameter estimation problem

- In most applications, the explicit expression for likelihood function is not available.
- When $g\left(\mathbf{x}\left(t_{i} ; \theta\right), \boldsymbol{\eta}_{\mathbf{i}}\right)=h\left(\mathbf{x}\left(t_{i} ; \theta\right)\right)+, \boldsymbol{\eta}_{\mathbf{i}}$, where, $\boldsymbol{\eta}_{\mathbf{i}} \sim P\left(\eta_{i}\right)$ are i.i.d. noises, one can approximate the likelihood function as,

$$
p\left(\mathbf{y}^{\dagger} \mid \theta\right)=\prod_{i} P\left(\boldsymbol{\eta}_{i}\right)=\prod_{i} P\left(\mathbf{y}_{i}^{\dagger}-h\left(\mathbf{x}\left(t_{i} ; \theta\right)\right)\right.
$$

- In the case where the evaluation of $p\left(\mathbf{y}^{\dagger} \mid \theta\right)$ is computationally feasible, one can apply direct MCMC (if the likelihood or approximate likelihood is available).
- If such likelihood approximation is not available but evaluation of $\mathbf{y}_{i}(\theta)$ is computationally feasible, one can use Approximate Bayesian Computation (ABC). ${ }^{2}$

[^0]
Parameter estimation problem

- If the evaluation of $\mathbf{y}_{i}(\theta)$ is intractable for sequential sampling, one can either: Improve the sampling methodology, e.g., Hamiltonian MC^{3}, DRAM ${ }^{4}$.

[^1]
Parameter estimation problem

- If the evaluation of $\mathbf{y}_{i}(\theta)$ is intractable for sequential sampling, one can either: Improve the sampling methodology, e.g., Hamiltonian MC^{3}, DRAM ${ }^{4}$.
- Or consider a surrogate modeling approach, e.g., Gaussian Process model ${ }^{5}$, Polynomial chaos ${ }^{6}$, spectral expansion ${ }^{7}$ Example: The polynomial chaos is used to approximate $\mathbf{x}\left(t_{i} ; \theta\right)$ in the parametric likelihood $p\left(\mathbf{y}^{\dagger} \mid \theta\right)$.

[^2]
Parameter estimation problem

- If the evaluation of $\mathbf{y}_{i}(\theta)$ is intractable for sequential sampling, one can either: Improve the sampling methodology, e.g., Hamiltonian MC^{3}, DRAM ${ }^{4}$.
- Or consider a surrogate modeling approach, e.g., Gaussian Process model ${ }^{5}$, Polynomial chaos ${ }^{6}$, spectral expansion ${ }^{7}$ Example: The polynomial chaos is used to approximate $\mathbf{x}\left(t_{i} ; \theta\right)$ in the parametric likelihood $p\left(\mathbf{y}^{\dagger} \mid \theta\right)$.
- Our aim is to handle the situation where likelihood is intractable and the evaluation of $\mathbf{y}_{i}(\theta)$ is computationally expensive such that sequential sampling is not feasible.

[^3]
Metropolis-Hasting Scheme

At step i, suppose we are given sample at previous step, θ_{i}.

- Draw a proposal $\theta^{*} \sim q\left(\theta_{i-1}, \theta^{*}\right)$ where q denotes a transition kernel density.
- Compute an acceptance rate,

$$
\alpha\left(\theta_{i-1}, \theta^{*}\right)=\frac{p\left(\theta^{*} \mid \mathbf{y}^{\dagger}\right)}{p\left(\theta_{i-1} \mid \mathbf{y}^{\dagger}\right)}=\frac{p\left(\mathbf{y}^{\dagger} \mid \theta^{*}\right) p\left(\theta^{*}\right)}{p\left(\mathbf{y}^{\dagger} \mid \theta_{i}\right) p\left(\theta_{i}\right)}
$$

- Draw $z \sim U[0,1]$ and let

$$
\theta_{i}= \begin{cases}\theta^{*}, & \text { if } z<\alpha\left(\theta_{i-1}, \theta^{*}\right) \\ \theta_{i-1}, & \text { otherwise }\end{cases}
$$

Application to the parameter estimation problem

Basically, our idea is to use a pair of training data set $\left\{\theta_{j}, \mathbf{y}_{i, j}\right\}_{i=1, \ldots, N}^{j=1, \ldots, M}$ to approximate the conditional density $p(\mathbf{y} \mid \theta)$.

Application to the parameter estimation problem

Basically, our idea is to use a pair of training data set $\left\{\theta_{j}, \mathbf{y}_{i, j}\right\}_{i=1, \ldots, N}^{j=1, \ldots, M}$ to approximate the conditional density $p(\mathbf{y} \mid \theta)$.

Let θ_{j} be uniformly distributed on a hyperrectangle \mathcal{M}. Then the cosine Fourier series $\varphi_{l}(\theta)$ form an orthonormal basis of $L^{2}(\mathcal{M})$.

Application to the parameter estimation problem

Basically, our idea is to use a pair of training data set $\left\{\theta_{j}, \mathbf{y}_{i, j}\right\}_{i=1, \ldots, N}^{j=1, \ldots, M}$ to approximate the conditional density $p(\mathbf{y} \mid \theta)$.

Let θ_{j} be uniformly distributed on a hyperrectangle \mathcal{M}. Then the cosine Fourier series $\varphi_{l}(\theta)$ form an orthonormal basis of $L^{2}(\mathcal{M})$.

Let $\mathbf{y}_{j} \in \mathcal{N} \subseteq \mathbb{R}^{n}$ distributed according to $q(\mathbf{y})$. Then applying the diffusion maps algorithm, we obtain $\psi_{k}(\mathbf{y}) \in L^{2}(\mathcal{N}, q)$. This choice of weights respect the geometry of the data and gives an improved error rate.

Application to the parameter estimation problem

Our nonparametric representation for $p(\mathbf{y} \mid \theta)^{8}$ is given as，

$$
\begin{aligned}
\hat{p}(\mathbf{y} \mid \theta) & =\sum_{k=1}^{K_{1}} \sum_{\ell=1}^{K_{2}}\left(\mathbf{C}_{\mathbf{Y} \Theta}\right)_{k \mid} \varphi_{l}(\theta) \psi_{k}(\mathbf{y}) q(\mathbf{y}), \\
\left(\mathbf{C}_{\mathbf{Y} \Theta}\right)_{k l} & =\mathbb{E}_{\mathbf{Y} \Theta}\left[\psi_{k} \varphi_{I}\right] \approx \frac{1}{M N} \sum_{j, i=1}^{M, N} \psi_{k}\left(\mathbf{y}_{i, j}\right) \varphi_{l}\left(\theta_{j}\right)
\end{aligned}
$$

Application to the parameter estimation problem

Our nonparametric representation for $p(\mathbf{y} \mid \theta)^{8}$ is given as,

$$
\begin{aligned}
\hat{p}(\mathbf{y} \mid \theta) & =\sum_{k=1}^{K_{1}} \sum_{\ell=1}^{K_{2}}\left(\mathbf{C}_{\mathbf{Y} \Theta}\right)_{k l} \varphi_{l}(\theta) \psi_{k}(\mathbf{y}) q(\mathbf{y}), \\
\left(\mathbf{C}_{\mathbf{Y} \Theta}\right)_{k l} & =\mathbb{E}_{\mathbf{Y} \Theta}\left[\psi_{k} \varphi_{l}\right] \approx \frac{1}{M N} \sum_{j, i=1}^{M, N} \psi_{k}\left(\mathbf{y}_{i, j}\right) \varphi_{l}\left(\theta_{j}\right)
\end{aligned}
$$

Error estimate: The first two moments of the error converges to 0 with convergence rates of order $M^{1 / 2} K_{1}^{1 / 2} N^{-1 / 2}$ and $M K_{1} N^{-1}$, respectively. Independent to the variance of $\psi_{k}(\mathbf{Y})$.

Example 1: Fast-slow SDE on $\mathcal{N}=S^{1} \times S^{1} \subset \mathbb{R}^{3}$

Consider $(\theta, \phi) \in[0,2 \pi]^{2}$.

$$
d(\theta, \phi)=a(\theta, \phi) d t+b(\theta, \phi, D) d W_{t}
$$

where

$$
b(\theta, \phi, D)=\left(\begin{array}{cc}
D+D \sin (\theta) & \frac{1}{4} \cos (\theta+\phi) \\
\frac{1}{4} \cos (\theta+\phi) & \frac{1}{40}+\frac{1}{40} \sin (\phi) \cos (\theta)
\end{array}\right)
$$

Let $\mathbf{x}_{i} \in \mathbb{R}^{3}$ be the observations defined via standard torus embedding. Our goal is to estimate $p\left(D \mid \mathbf{x}_{1: \mathbf{T}}\right)$, where $T=10,000$.

We compare RKHS using:

- Cosine (and Hermite) basis on \mathbb{R}^{3}.
- Variable Bandwidth Diffusion Maps (VBDM) basis obtained from ambient data.
- Fourier basis on intrinsic geometry.

Example 1: Likelihood function estimates

(j) intrinsic Fourier, $\hat{p}\left(\mathbf{x} \mid D_{1}\right)$

(g) VBDM, $\hat{p}\left(\mathbf{x} \mid D_{1}\right)$

(d) Cosine, $p\left(\mathbf{x} \mid D_{1}\right)$

(k) intrinsic Fourier, $\hat{p}\left(\mathbf{x} \mid D_{4}\right)$

(h) VBDM, $p\left(\mathrm{x} \mid D_{4}\right)$

(e) Cosine, $\hat{p}\left(\mathbf{x} \mid D_{4}\right)$

(1) intrinsic Fourier, $\hat{p}\left(\mathbf{x} \mid D_{7}\right)$

(i) VBDM, $p\left(\mathbf{x} \mid D_{\uparrow}\right)$

(f) Cosine, $\hat{p}\left(\mathrm{x} \mid D_{7}\right)$

Example 1: Posterior density estimates

Posterior density estimates from MCMC.

Note: The likelihood function is trained on a wide range of parameter values $\{1 / 4,2 / 4,3 / 4, \ldots, 2\}$.

Example 2: Lorenz-96 model

Consider .

$$
\begin{aligned}
\frac{d x_{j}}{d t} & =x_{j-1}\left(x_{j+1}-x_{j-2}\right)-x_{j}+F, \quad j=1, \ldots, 5, \\
y_{j}\left(t_{m}\right) & =x_{j}\left(t_{m}\right)+\epsilon_{m, j}, \quad \epsilon_{m, j} \sim \mathcal{N}\left(0, \sigma^{2}\right), \quad m=1, \ldots, T
\end{aligned}
$$

Here, the observation time $t_{m}=m(s \delta t)$, where δt denotes integration time step.

Our goal is to estimate $p\left(F \mid \mathbf{y}^{\dagger}\right)$ via MCMC. We compare:

- VBDM: $p\left(\mathbf{y}^{\dagger} \mid F\right)=\prod_{i} p\left(\mathbf{y}_{i}^{\dagger} \mid F\right)$, where $p\left(\mathbf{y}_{i}^{\dagger} \mid F\right)$ is estimated via RKHS.
- Direct Estimate: $p\left(\mathbf{y}^{\dagger} \mid F\right)=\exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i}\left(\mathbf{y}_{i}^{\dagger}-h\left(\mathbf{x}\left(t_{i} ; F\right)\right)\right)^{2}\right)$.
- NISP (Nonlinear Intrusive Spectral Projection) uses this Gaussian likelihood but approximate \mathbf{x} with polynomial chaos expansion in F.

Example 2: Posterior mean estimates.

(a)

Remarks:

- Direct MCMC simulation involves 40,000 model evaluations.
- Both NISP and the nonparametric VBDM likelihood functions involve only 8 model evaluations in training phase.

Example 3: 40D Lorenz-96 model

Let $\left\{\hat{x}_{k}\left(t_{m}, F\right)\right\}_{-J / 2+1, \ldots, J / 2}$ be the k th discrete Fourier coefficient of $\left\{x_{j}\right\}_{j=1 \ldots, J}$ at time t_{m} and parameter value F.

We consider Bayesian inference for estimating $P\left(F \mid \mathbf{y}_{0: T}\right)$, where each component of \mathbf{y}_{m} is an autocorrelation function of Fourier modes k_{j} :

$$
\begin{aligned}
y_{m, j}(F) & =\mathbb{E}\left[\hat{x}_{k_{j}}\left(t_{m}, F\right) \hat{x}_{k_{j}}\left(t_{0}, F\right)\right] \\
& \approx \frac{1}{L} \sum_{\ell=1}^{L} \hat{x}_{k_{j}}\left(t_{\ell}+m, F\right) \hat{x}_{k_{j}}\left(t_{\ell}, F\right)
\end{aligned}
$$

on energetic Fourier modes $k_{j} \in\{7,8,9,14\}$ and $m=0, \ldots, T$.
Remarks: We set $L=10^{6}$ large enough to have small enough Monte-Carlo error. We set T to account for correlation up to model unit time 2.5.

Example 3: Estimates from chain of length $40,000$.

Training parameter set: $\{6,6.1, \ldots, 9\}$.
Verification parameter set: $\{6.05,6.15, \ldots, 8.95\}$.

Biased observation model error problems in DA

The Kalman based DA formulation assumes unbiased observation model error, e.g.,

$$
y_{i}=h\left(x_{i}\right)+\eta_{i}, \quad \eta_{i} \sim \mathcal{N}(0, R)
$$

Suppose the operator h is un known. Instead, we are only given \tilde{h}, then

$$
y_{i}=\tilde{h}\left(x_{i}\right)+b_{i}
$$

where we introduce a biased model error, $b_{i}=h\left(x_{i}\right)-\tilde{h}\left(x_{i}\right)+\eta_{i}$.

Example: Basic radiative transfer model

Consider solutions of the stochastic cloud model ${ }^{9}$, $\left\{T(z), \theta_{e b}, q, f_{d}, f_{s}, f_{c}\right\}$. Based on this solutions, define a basic radiative transfer model as follows,

$$
h_{\nu}(x)=\theta_{e b} T_{\nu}(0)+\int_{0}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z
$$

where T_{ν} is the transmission between heights z to ∞ that is defined to depend on q.
The weighting function, $\frac{\partial T_{\nu}}{\partial z}$ are defined as follows:

${ }^{9}$ Khouider, Biello, Majda 2010

Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is $z_{d}=12 \mathrm{~km}$, while the cumulus cloud top height is $z_{c}=3 \mathrm{~km}$. Define $f=\left\{f_{d}, f_{c}, f_{s}\right\}$ and $x=\left\{T(z), \theta_{e b}, q\right\}$. Then the cloudy RTM is given by,

$$
\begin{aligned}
h_{\nu}(x, f)= & \left(1-f_{d}-f_{s}\right)\left[\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{t}\right) T_{\nu}\left(z_{d}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z
\end{aligned}
$$

Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is $z_{d}=12 \mathrm{~km}$, while the cumulus cloud top height is $z_{c}=3 \mathrm{~km}$. Define $f=\left\{f_{d}, f_{c}, f_{s}\right\}$ and $x=\left\{T(z), \theta_{e b}, q\right\}$. Then the cloudy RTM is given by,

$$
\begin{aligned}
h_{\nu}(x, f)= & \left(1-f_{d}-f_{s}\right)\left[\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{t}\right) T_{\nu}\left(z_{d}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z \\
= & \left(1-f_{d}-f_{s}\right)\left[\left(1-f_{c}\right)\left(\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{c}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right)\right. \\
& \left.+f_{c} T\left(z_{c}\right) T_{\nu}\left(z_{c}\right)+\int_{z_{c}}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{d}\right) T_{\nu}\left(z_{t}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z
\end{aligned}
$$

Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is $z_{d}=12 \mathrm{~km}$, while the cumulus cloud top height is $z_{c}=3 \mathrm{~km}$. Define $f=\left\{f_{d}, f_{c}, f_{s}\right\}$ and $x=\left\{T(z), \theta_{e b}, q\right\}$. Then the cloudy RTM is given by,

$$
\begin{aligned}
h_{\nu}(x, f)= & \left(1-f_{d}-f_{s}\right)\left[\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{t}\right) T_{\nu}\left(z_{d}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z \\
= & \left(1-f_{d}-f_{s}\right)\left[\left(1-f_{c}\right)\left(\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{c}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right)\right. \\
& \left.+f_{c} T\left(z_{c}\right) T_{\nu}\left(z_{c}\right)+\int_{z_{c}}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{d}\right) T_{\nu}\left(z_{t}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z
\end{aligned}
$$

One can check that $h_{\nu}(x, 0)$ corresponds to cloud-free RTM.

Observation model error in data assimilation

Suppose the observation is generated with

$$
y_{\nu}=h_{\nu}(x, f)+\eta, \quad \eta \sim \mathcal{N}(0, R)
$$

The difficulty in estimating the cloud fractions, cloud top heights and (in reality we don't know precisely how many clouds under a column) induces model error.

Observation model error in data assimilation

Suppose the observation is generated with

$$
y_{\nu}=h_{\nu}(x, f)+\eta, \quad \eta \sim \mathcal{N}(0, R)
$$

The difficulty in estimating the cloud fractions, cloud top heights and (in reality we don't know precisely how many clouds under a column) induces model error.
In an extreme case, we consider filtering with a cloud-free RTM:

$$
y_{\nu}=h_{\nu}(x, 0)+b_{\nu}
$$

where $b_{\nu}=h_{\nu}(x, f)-h_{\nu}(x, 0)+\eta$ is model error with bias.

Observations $\left(y_{\nu}\right)$ v Model error $\left(b_{\nu}\right)$

State estimation of the model error

We propose a secondary filter to estimate the statistics for b_{i} as follows：

We employ the RKHS theory to train a nonparametric likelihood function $p\left(y_{i} \mid b\right)^{10}$ ．
${ }^{10}$ Berry and H，Mon．Wea．Rev． 2017.

Recall that $b_{i}=h\left(x_{i}\right)-\tilde{h}\left(x_{i}\right)+\eta_{i}=y_{i}-\tilde{x}_{i}$.
Given the prior ensemble $\left\{x_{i}^{b, k}\right\}_{k=1 \ldots, K}$:

Recall that $b_{i}=h\left(x_{i}\right)-\tilde{h}\left(x_{i}\right)+\eta_{i}=y_{i}-\tilde{x}_{i}$.
Given the prior ensemble $\left\{x_{i}^{b, k}\right\}_{k=1 \ldots, k}$:

- Compute $\bar{y}^{b}=\frac{1}{K} \sum_{k=1}^{K} \tilde{h}\left(x_{i}^{b, k}\right)$.

Recall that $b_{i}=h\left(x_{i}\right)-\tilde{h}\left(x_{i}\right)+\eta_{i}=y_{i}-\tilde{x}_{i}$.
Given the prior ensemble $\left\{x_{i}^{b, k}\right\}_{k=1 \ldots, K}$:

- Compute $\bar{y}^{b}=\frac{1}{K} \sum_{k=1}^{K} \tilde{h}\left(x_{i}^{b, k}\right)$.
- Define $Y_{i}=\left[\tilde{h}\left(x_{i}^{b, K}\right), \ldots, \tilde{h}\left(x_{i}^{b, K}\right)\right]$ and $P_{y y, i}=\frac{1}{K-1} Y_{i} Y_{i}^{\top}$.

Recall that $b_{i}=h\left(x_{i}\right)-\tilde{h}\left(x_{i}\right)+\eta_{i}=y_{i}-\tilde{x}_{i}$.
Given the prior ensemble $\left\{x_{i}^{b, k}\right\}_{k=1 \ldots, K}$:

- Compute $\bar{y}^{b}=\frac{1}{K} \sum_{k=1}^{K} \tilde{h}\left(x_{i}^{b, k}\right)$.
- Define $Y_{i}=\left[\tilde{h}\left(x_{i}^{b, K}\right), \ldots, \tilde{h}\left(x_{i}^{b, K}\right)\right]$ and $P_{y y, i}=\frac{1}{K-1} Y_{i} Y_{i}^{\top}$.
- Assume that

$$
p(b)=\mathcal{N}\left(y_{i}-\bar{y}_{i}^{b}, P_{y y, i}+R\right)
$$

Recall that $b_{i}=h\left(x_{i}\right)-\tilde{h}\left(x_{i}\right)+\eta_{i}=y_{i}-\tilde{x}_{i}$.
Given the prior ensemble $\left\{x_{i}^{b, k}\right\}_{k=1 \ldots, K}$:

- Compute $\bar{y}^{b}=\frac{1}{K} \sum_{k=1}^{K} \tilde{h}\left(x_{i}^{b, k}\right)$.
- Define $Y_{i}=\left[\tilde{h}\left(x_{i}^{b, K}\right), \ldots, \tilde{h}\left(x_{i}^{b, K}\right)\right]$ and $P_{y y, i}=\frac{1}{K-1} Y_{i} Y_{i}^{\top}$.
- Assume that

$$
p(b)=\mathcal{N}\left(y_{i}-\bar{y}_{i}^{b}, P_{y y, i}+R\right)
$$

- Then apply the secondary Bayesian on training data set b_{ℓ} with nonparametric likelihood from RKHS.

$$
p\left(b \mid y_{i}\right) \propto p(b) p\left(y_{i} \mid b\right)
$$

Recall that $b_{i}=h\left(x_{i}\right)-\tilde{h}\left(x_{i}\right)+\eta_{i}=y_{i}-\tilde{x}_{i}$.
Given the prior ensemble $\left\{x_{i}^{b, k}\right\}_{k=1 \ldots, K}$:

- Compute $\bar{y}^{b}=\frac{1}{K} \sum_{k=1}^{K} \tilde{h}\left(x_{i}^{b, k}\right)$.
- Define $Y_{i}=\left[\tilde{h}\left(x_{i}^{b, K}\right), \ldots, \tilde{h}\left(x_{i}^{b, K}\right)\right]$ and $P_{y y, i}=\frac{1}{K-1} Y_{i} Y_{i}^{\top}$.
- Assume that

$$
p(b)=\mathcal{N}\left(y_{i}-\bar{y}_{i}^{b}, P_{y y, i}+R\right)
$$

- Then apply the secondary Bayesian on training data set b_{ℓ} with nonparametric likelihood from RKHS.

$$
p\left(b \mid y_{i}\right) \propto p(b) p\left(y_{i} \mid b\right)
$$

- Compute the mean and variance of the observation model error,

$$
\begin{aligned}
\hat{\mu}_{b_{i}} & =\mathbb{E}\left[b \mid y_{i}\right] \\
\hat{R}_{b_{i}} & =\operatorname{Var}\left[b \mid y_{i}\right]
\end{aligned}
$$

and use these terms to compensate for bias and variance of the observation model error in the primary filter.

Secondary Bayesian filter

$$
p\left(b \mid y_{i}\right) \propto p(b) p\left(y_{i} \mid b\right)
$$

Filter estimates (with adaptive tuning of R and Q).

Discussion

For junior participants: How to extend $p(y \mid \theta)$ on observations y^{\dagger} that do not belong to the training data set?

General Research problems:

For Parameter Estimation Problem:

- How to pick data set for training of the likelihood function? This issue will be problematic for high-dimensional parameter space.
- Identifiability of high-dimensional parameter space.

For DA Problem:

- How to use this RKHS supervised learning algorithm in other DA context?

References:

- S. Jiang and J. Harlim, Parameter Estimation with Data-Driven Nonparametric Likelihood Functions, arXiv:1804.03272.
- T. Berry and J. Harlim, Correcting biased observation model error in data assimilation, Mon Wea. Rev. 145(7), 2833-2853, 2017.

Collaborators:

- Shixiao Jiang, Postdoc at Department of Mathematics, The Pennsylvania State University.
- Tyrus Berry, Assistant Professor at Department of Mathematical Sciences, George Mason University.

[^0]: ${ }^{2}$ Tavaré et al, Genetics 1997, Turner \& Van Zandt, J. Math. Psychology, 2012.

[^1]: ${ }^{3}$ Neal et al. in Handbook of MCMC, 2011
 ${ }^{4}$ Haario et al, Stat. Comput. 2006
 ${ }^{5}$ Higdon et al., SIAM J. Sci. Comput. 2004.
 ${ }^{6}$ Marzouk and Xiu, Comm. Comput. Phys., 2009.
 ${ }^{7}$ Nagel and Sudret, J. Comput. Phys. 2016.

[^2]: ${ }^{3}$ Neal et al. in Handbook of MCMC, 2011
 ${ }^{4}$ Haario et al, Stat. Comput. 2006
 ${ }^{5}$ Higdon et al., SIAM J. Sci. Comput. 2004.
 ${ }^{6}$ Marzouk and Xiu, Comm. Comput. Phys., 2009.
 ${ }^{7}$ Nagel and Sudret, J. Comput. Phys. 2016.

[^3]: ${ }^{3}$ Neal et al. in Handbook of MCMC, 2011
 ${ }^{4}$ Haario et al, Stat. Comput. 2006
 ${ }^{5}$ Higdon et al., SIAM J. Sci. Comput. 2004.
 ${ }^{6}$ Marzouk and Xiu, Comm. Comput. Phys., 2009.
 ${ }^{7}$ Nagel and Sudret, J. Comput. Phys. 2016.

