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Plan of the talk:

I Reproducing kernel with diffusion maps basis.

I A data assimilation application: An online estimation of
observation model error.

I Recover missing dynamics.



Nonparametric likelihood functions

Recall that given ϕj(θ) ∈ L2(M, q) and ψk(y) ∈ L2(N , q̃) be the, respective,
orthonormal bases. Then,

p(y |θ) =
∑
k,j

ϕj(θ)[CYΘC
−1
ΘΘ]kjψk(y)q̃(y)

where,

[
CYΘ

]
jk
≈ 1

N

N∑
i=1

ϕ̃j(yi )ϕk(θi ),

[
CΘΘ

]
jk
≈ 1

N

N∑
i=1

ϕj(θi )ϕk(θi ).

Remarks: In the following application, given training data {θi , yi}i=1,...,N , we
will employ diffusion maps to construct basis functions ϕj(θi ) and ψk(yi ).



Biased observation model error problems in DA

The Kalman based DA formulation assumes unbiased observation
model error, e.g.,

yi = h(xi ) + ηi , ηi ∼ N (0,R).

Suppose the operator h is un known. Instead, we are only given h̃,
then

yi = h̃(xi ) + bi ,

where we introduce a biased model error, bi = h(xi )− h̃(xi ) + ηi .



Example: Basic radiative transfer model

Consider solutions of the stochastic cloud model1, {T (z), θeb, q, fd , fs , fc}.
Based on this solutions, define a basic radiative transfer model as follows,

hν(x) = θebTν(0) +

∫ ∞
0

T (z)
∂Tν
∂z

(z) dz ,

where Tν is the transmission between heights z to ∞ that is defined to depend
on q.
The weighting function, ∂Tν

∂z
are defined as follows:
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Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is zd = 12km, while the
cumulus cloud top height is zc = 3km. Define f = {fd , fc , fs} and
x = {T (z), θeb, q}. Then the cloudy RTM is given by,

hν(x , f ) = (1− fd − fs)
[
θebTν(0) +

∫ zd

0

T (z)
∂Tν
∂z

(z) dz
]

+(fd + fs)T (zt)Tν(zd) +

∫ ∞
zd

T (z)
∂Tν
∂z

(z) dz

= (1− fd − fs)
[
(1− fc)

(
θebTν(0) +

∫ zc

0

T (z)
∂Tν
∂z

(z) dz
)

+fcT (zc)Tν(zc) +

∫ zd

zc

T (z)
∂Tν
∂z

(z) dz
]

+(fd + fs)T (zd)Tν(zt) +

∫ ∞
zd

T (z)
∂Tν
∂z

(z) dz

One can check that hν(x , 0) corresponds to cloud-free RTM.
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Observation model error in data assimilation

Suppose the observations are generated with

yν = hν(x , f ) + η, η ∼ N (0,R)

The difficulty in estimating the cloud fractions, cloud top heights
and (in reality we don’t know precisely how many clouds under a
column) induces model error.

In an extreme case, we consider filtering with a cloud-free RTM:

yν = hν(x , 0) + bν

where bν = hν(x , f )− hν(x , 0) + η is model error with bias.
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Observations (yν) v Model error (bν)



State estimation of the model error

We propose a secondary filter to estimate the statistics for bi as follows:

Prior
Primary Filter−−−−−−−−−−−−−−→ Posterior

p(xi ) p(xi | yi )y x
Error Prior

Secondary Filter−−−−−−−−−−−−−−→Error Posterior
p(b) p(b | yi )x x

Observation
RKHS+Training Data−−−−−−−−−−−−−−−→ Likelihood

yi p(yi | b)

We employ the RKHS theory to train a nonparametric likelihood function
p(yi |b)2.

2Berry and H, Mon. Wea. Rev. 2017.



Recall that bi = h(xi )− h̃(xi ) + ηi = yi − x̃i .

Given the prior ensemble {xb,ki }k=1...,K :

I Compute ȳb = 1
K

∑K
k=1 h̃(xb,ki ).

I Define Yi = [h̃(xb,Ki ), . . . , h̃(xb,Ki )] and Pyy ,i = 1
K−1YiY

>
i .

I Assume that

p(b) = N (yi − ȳbi ,Pyy ,i + R)

I Then apply the secondary Bayesian on training data set b`
with nonparametric likelihood from RKHS.

p(b|yi ) ∝ p(b)p(yi |b)

I Compute the mean and variance of the observation model
error,

µ̂bi = E[b|yi ]
R̂bi = Var [b|yi ]

and use these terms to compensate for bias and variance of
the observation model error in the primary filter.
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K

∑K
k=1 h̃(xb,ki ).

I Define Yi = [h̃(xb,Ki ), . . . , h̃(xb,Ki )] and Pyy ,i = 1
K−1YiY

>
i .

I Assume that

p(b) = N (yi − ȳbi ,Pyy ,i + R)
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Secondary Bayesian filter

p(b|yi ) ∝ p(b)p(yi |b)
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Filter estimates (with adaptive tuning of R and Q3).
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Corrupted observations in Lorenz-96 model
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Sensitivity to observation noise variance and time
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Ro for a fixed observation time ∆t = 0.1. Right: RMSE as a
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method is implemented.



Averaging Theory4

Consider fast-slow systems with ε� 1,

dx

dt
= f (x , y), x(0) = x0 (1)

dy

dt
=

1

ε
g(x , y), y(0) = y0. (2)

Assume that for fixed x , (2) is ergodic with invariant meas µx(dy).
Then, as ε→ 0, up to finite time O(1), x(t) can be approximated
by X (t) that solves,

dX

dt
= f̄ (X ) =

∫
f (x , y)µx(dy), X (0) = x0. (3)

Via ergodic theory, f̄ (X ) = limt→∞
∫ t

0 f (X , zx(s)) ds, where zx(s)
is solution of (2) for fixed x .

4see e.g. Kurtz 1975, Papanicolaou 1976, Pavliotis and Stuart 2000.
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The problem of missing dynamics

Suppose we have no knowledge of the fast equation

dx

dt
= f (x , y), x(0) = x0

dy

dt
=

1

ε
g(x , y), y(0) = y0.

This means we have no access to samples zx(t). At the same time
if we don’t have explicit expression for µx(dy), then we can’t
compute f̄ (x).

Given these constraints, we propose to use data set {xi , yi} to
construct an RKHS conditional density, µx(dy) = p(y |x) dy .
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Preliminary results6

Consider Lorenz-96 model,

dxk
dt

= xk−1(xk+1 − xk−2)− xk + F + Bk ,

dyj ,k
dt

=
1

ε
(yj+1,k(yj−1,k − yj+2,k)− yj ,k + hyxk) ,

where Bk = hx
J

∑
Yj,k

, k = 1, . . . ,K , j = 1, . . . , J.
The variables, xk and yj ,k are periodic.

In our simulation, we fix the parameters
K = 18, J = 20,F = 10, hx = −1, hy = 1 5.

In this case, we are missing the KJ = 360 dimensional of
dynamical components y .

5Crommelin & Vanden-Eijnden, Mon. Wea. Rev. 2008
6joint work with Shixiao Jiang



Preliminary results8

I For this example, we apply RKHS theory on timeseries of
{xi ,Bi} to construct p(B|x).

I The reduced model consists of solving the slow dynamics with
Bk(t) replaced by EBk |xk (t)[Bk ](t),

dxk
dt

= xk−1(xk+1 − xk−2)− xk + F + EBk |xk [Bk ].

I We will use VBDM and Hermite basis.

I We compare this to a parametric technique of Wilks7.

7Wilks, Quart. J. of Roy. Meteor. Soc., 2005
8joint work with Shixiao Jiang



Case ε = 1/128, we train p(Bk(t)|xk(t))
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Figure : Autocorrelation function 〈xk(t)xk(0)〉
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Figure : Cross-correlation function 〈xk(t)xk+1(0)〉



Case ε = 1/128, we train p(Bk(t)|xk(t))
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Figure : Lead forecast error (RMS)



Case ε = 1/2, we train p(Bk(t)|xk(t),Bk(t −∆t))
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Figure : Autocorrelation function 〈xk(t)xk(0)〉
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Case ε = 1/2, we train p(Bk(t)|xk(t),Bk(t −∆t))
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Figure : Lead forecast error (RMS)



Scatter plot of xk vs Bk (and the estimated E[Bk ])
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