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Disclaimer

I Lecture notes in progress!

I Will be updated according to the wishes of the audience
(hopefully!)

I Bibliography still to be processed!



Overview and informal structure of the study

I Work in progress!

I Falls into the scope of statistical inference with PDE.

I Statistical setting: We have (i) data ZN and (ii) a parameter
of interest f . Asymptotics are taken as N →∞.

I Structure of the problem:

HN(ZN) = 0 for some SDE HN ,

ZN → ξ limiting object,

H(ξ, f ) = 0 for some PDE H.

I Objective: recover f from the observation of ZN , or a proxy
ZN of ZN .



Overview and informal structure of the study

I We need to specify several objects and a methodology

1. What are ZN and f ? (and therefore the meaning of HN and
H)

2. What is N?
3. What do we mean by a proxy ZN of ZN?
4. What do we mean by recovering f (as N →∞)?

I We do not have a “nice theory” at this stage. We will rather
explore these questions via several examples.

I We have a relatively complete picture in some cases.

I For other examples, we have more questions than answers!



Paradigmatic examples

1. Cell division: growth-fragmentation models
I Age-structured models and the renewal equation
I Size-structured models

2. General bifurcating models

3. Human population models for demography  Lecture II
I Cohort effects in human mortality
I Towards nonlinearity

4. Models of interacting neurons  Lecture IV

I Spikes models
I Hawkes models

5. More nonlinear models in a mean-field limit  Lecture IV



Paradigmatic examples

Cell division: growth-fragmentation models

General bifurcating models



Example 1: Growth-fragmentation models

I We consider (simple) branching processes with deterministic
evolution between jump times.

I Such models appear as toy models for population growth in
cellular biology.

I We wish to statistically estimate the parameters of the model,
in order to ultimately discriminate between different
hypotheses related to the mechanisms that trigger cell
division.



Example 1: Growth-fragmentation models

I We structure the model by state variables for each individual
like size, age, growth rate, DNA content and so on.

I The evolution of the particle system is described by a common
mechanism:

1. Each particle grows by ingesting a common nutrient =
deterministic evolution.

2. After some time, depending on a structure variable, each
particle gives rise to k = 2 offsprings by cell division =
branching event.

I Goal: estimate the branching rate as a function of age or size
(or both).



Figure: Evolution of a E. Coli population.
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Figure: Evolution of a E. Coli population.



Growth-fragmentation models, informal description

I The growth of a cell size follows the deterministic evolution

dX (t)

dt
= κ

(
X (t)

)
dt.

I A mother cell of size x and age a splits into two daughter cells
with a division rate B depending on its age a or size x .

I 1 cell of size x gives birth to 2 cells of size x/2.



Example 1: mathematical description

I MF the set of finite point measures on R+ = [0,∞).

I For M ∈MF and test function ϕ ≥ 0:

〈M, g〉 =

∫
[0,∞)

ϕ(s)M(ds) =

〈M,1〉∑
i=1

ϕ(xi )

for a finite (ordered) family (xi )↔ M of nonnegative xi .

I Evaluation maps: xi :MF → [0,∞) : M 7→ xi (M) = xi .

I In particular 〈M, 1〉 = size of the population M.



Example 1.1: An age-structured model

I
(
Ai (t)

)
1≤i≤Nt

= all the (ordered) ages of the cell population
at time t.

I Zt =
∑Nt

i=1 δAi (t) with Nt = 〈Zt , 1〉.
I The division rate a 7→ B(a) is a function of age only!

Associated SDE:

Zt = τtZ0+∫ t

0

∑
i≤〈Zs−,1〉

∫
0≤θ≤B(ai (Zs−))

(
2δt−s − δai (Zs−)+t−s

)
Q(ds, di , dθ)

I Q : Poisson random measure, intensity ds
(∑

k≥1 δk(di)
)
dθ.

I τt
∑

i δai =
∑

i δai+t .



Example 1.1: An age-structured model

Figure: A sample path of Zt(da)0≤t≤T with B(a) = a2 and T = 7.



Example 1.1: limiting object

I N = NT = 〈ZT , 1〉 → ∞ as T →∞.

I Here N is random and the asymptotics are transferred to T .

I Heuristically ZT ≈ E
[
ZT (da)

]
= ξT (da) = g(T , a)da.

I g(t, x) is a weak solution to the renewal equation:
∂tg(t, a) + ∂ag(t, a) + B(a)g(t, a) = 0

g(0, a) = g0(a), g(t, 0) = 2
∫∞

0 B(a)g(t, a)da.



Example 1.1: identification of the objects of interest

I We need to specify several objects and a methodology

1. What are ZN and f ? (and therefore the meaning of HN and
H)

2. What is N?
3. What do we mean by a proxy of ZN?
4. What do we mean by recovering f (as N →∞)?

I We have identified the following objects

• N is 〈ZT , 1〉.
• ZN is (Zt)0≤t≤T .
• f is (t, a) 7→ g(t, a) or a 7→ B(a).
• HN and H are the SDE and the renewal equation.



Example 1.2: A size-structured model

I
(
Xi (t)

)
1≤i≤Nt

= all the sizes of the cell population at time t.

I Zt =
∑Nt

i=1 δXi (t) with Nt = 〈Zt , 1〉.
I The division rate x 7→ B(x) is a function of size only!

Associated SDE:

Zt = φZ0(t)+∫ t

0

∑
i≤〈Zs−,1〉

∫
0≤θ≤B(ai (Zs−))

(
2δφ xi (Zs−)

2

(t−s) − δφxi (Zs−)(t−s)

)
Q(ds, di , dθ)

I d
dtφx(t) = κ

(
φx(t)

)
with φx(0) = x .

I φ∑
i δxi

(t) =
∑

i δφxi (t).



Example 1.2: limiting object

I N = NT = 〈ZT , 1〉 → ∞ as T →∞.

I N is random and the asymptotics are transferred to T .

I Heuristically ZT ≈ E
[
ZT (dx)

]
= ξT (dx) = g(T , x)dx

I g(t, x) is a weak solution to the transport-fragmentation
equation:

∂tg(t, x) + ∂x
(
κ(x)g(t, x)

)
+ B(x)g(t, x) = 4B(2x)g(t, 2x)

g(0, x) = g0(x) and g(t, 0) = 0, t > 0.



Example 1.2: identification of the objects of interest

I Similarly to Example 1.1, we can identify the following objects

• N is 〈ZT , 1〉.
• ZN is (Zt)0≤t≤T .
• f is (t, x) 7→ g(t, x) or x 7→ B(x).
• HN and H are the SDE and the transport-fragmentation

equation.



Observation schemes, proxy of ZN

We will distinguish several observation schemes ZN depending on
the observation devices at hand:

(a) We observe the whole path ZN = (Zt)0≤t≤T
(b) We observe Z at a terminal time t = T . Two situations

I ZN = ZT .
I Zn is a n-sample of ZT , with n� N = 〈ZT , 1〉. Our data is

thus a proxy of ZT with n→∞ (as N →∞).

(c) ZN is realised as a subsample of size N of ZT at certain
stopping times that correspond to branching events. Again,
we need N large as T →∞.



Observing Z via a genealogical representation

I We elaborate on the observation schemes (a), (b) and (c) by
means of a genealogical representation.

I The population evolution is associated with an infinite marked
binary tree

T =
⋃
m∈N

Gm, Gm = {0, 1}m, (G0 = ∅).

I To each cell or node u ∈ T, we associate a node with size at
birth ξu and lifetime ζu.

I To each u ∈ T, we associate a birth time bu and a time of
death du so that ζu = du − bu.



The process Z via a genealogical representation

We have the following identity between point measures

• Example 1.1 (age model)

Zt =
∑
u∈T

δt−bu1{bu≤t<bu+ζu}

• Example 1.2 (size model)

Zt =
∑
u∈T

δφξu (t−bu)1{bu≤t<bu+ζu}.



Observation scheme (a) and (b): temporal data

We introduce random subsets of T
I TT =

{
u ∈ T, bu ≤ T

}
= T̊T ∪ ∂ TT , with

T̊T =
{
u ∈ T, du ≤ T

}
and ∂ TT =

{
u ∈ T, bu ≤ T < du

}
.

I In Example 1.1 (age model) for observation schemes (a) and
(b), we have

(Zt)0≤t≤T =
{
ζTu = min(du,T )− bu, u ∈ TT

}
,

ZT =
{
ζTu , u ∈ ∂ TT

}
.



Temporal data

Figure: Genealogical tree observed up to T = 7 for a time-dependent
division rate B(a) = a2 (60 cells). In blue: T̊T . In red: ∂ TT .



Observation scheme (a) and (b): temporal data

I
∣∣T̊T ∣∣ and

∣∣∂ TT ∣∣ are of the same order of magnitude.

I In Example 1.2 (size model), for observation schemes (a) and
(b), we have

(Zt)0≤t≤T =
{
ζTu , ξ

T
u , u ∈ TT

}
,

ZT =
{
ξTu , u ∈ ∂ TT

}
,

with ξTu = ξu if du ≤ T and φξu(T − bu) otherwise.



Observation scheme (c): genealogical data

I Introduce the binary tree up to the first n-generations

Tn =
n⋃

m=0

Gm.

I Observation scheme (c): informally, for some n ≥ 1, we
observe (ζu, ξu) along a subset of Tn, called a %-regular tree.

I Definition
Un ⊆ Tn is a %-regular tree if

1. u ∈ Un =⇒ u− ∈ Un (u− parent of u)
2.
∣∣Un ∩Gn

∣∣ ≈ 2n% (0 ≤ % ≤ 1).

I Two extreme cases

• Dense case: Un = Tn, with |Un| = 2n+1 − 1 (and % = 1).
• Sparse case: Un a single line along Tn, with |Un| = n (and
% = 0).



Observation scheme (c): genealogical data

I Take a %-regular tree Un with size N = κ2%n.

I Define the (now random) time

T = inf{t ≥ 0, Zt has visited all the nodes of Un}

I The observation scheme is then ZN = (ξu, ζu)u∈Un , extracted
from (Zt)0≤t≤T .

I N = κ2%n →∞ as n→∞.

I Now, T = T
(
N, (Zt)t≥0

)
→∞ as n→∞.



Temporal versus geneaological data: selection bias!

Figure: Genealogical tree observed up to T = 7 for a time-dependent
division rate B(a) = a2 (60 cells). In blue: ŮT . In red: ∂ UT .



Genealogical data

Figure: The same outcome organised at a genealogical level.

The handling of genealogical data (via discrete Markov chain
techniques) will prove significantly easier than temporal data.



Paradigmatic examples

Cell division: growth-fragmentation models

General bifurcating models



General bifurcating models

I Observation scheme (c)  digression on bifurcating Markov
chains models.

I Bifurcating Markov chains = Markov chains on binary trees.

I Extension to non-deterministic evolution between jumps.
I So far, evolution given by φx(t) = value of the trait at time t

with initial value x at t = 0:

• Example 1.1 (age model)

φ0(t) = t.

• Example 1.2 (size model)

dφx(t) = κ
(
φx(t)

)
dt, φx(0) = x ∈ (0,∞).

I We may think of more general flows in between jumps.



Example 2: more general flows

I Binary division triggered by a trait x ∈ X ⊆ R.

I The trait stochastically evolves according to

dφx(t) = κ(φx(t))dt + σ(φx(t))dWt , φx(0) = x

r , σ : X → X regular functions, (Wt)t≥0 standard BM.

I A branching event occurs with probability

B
(
φx(t)

)
dt during [t, t + dt]

B : X → [0,∞) division rate.

I At division, a particle with trait y is replaced by two particles
with traits yϑ and y(1− ϑ), where Law(ϑ) = r(dy).

I Parameters of the model : (κ, σ,B, r).



Bifurcating Markov chains
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Figure: Example of a trajectory of a BMC and its associated genealogy.



Bifurcating Markov chains

I X a state space and P: X → X ×X a Markov kernel.

I
(
Ω,F , (Fm)m≥0,P

)
a filtered probability space.

I Notation: |u| = m for u ∈ Gm.
u0 = (u, 0) ∈ Gm+1, u1 = (u, 1) ∈ Gm+1.
Pψ(x) =

∫
X×X ψ(x , y1, y2)P(x , dy1dy2).

Definition
A family of X -valued r.v. (Xu)u∈T is a BMC with transition P if
Xu is F|u|-measurable and

E
[ ∏
u∈Gm

ψu(Xu,Xu0,Xu1)
∣∣Fm

]
=
∏

u∈Gm

Pψu(Xu)

for every m ≥ 0 and any family of (bounded) functions (ψu)u∈Gm .



Representation of P for Examples 1.1 and 1.2

I Example 1.1 Xu = ζu for the age model:

P(x , dy1 dy2) = δ0(dy1)⊗ δ0(dy2)

I Example 1.2 Xu = ξu for the size model:

P(x , dy1 dy2) = Q(x , y1)dy1 ⊗ δy1(dy2)

with

Q(x , y) =
B(2y)

1
2κ
(
φ−1
x (2y)

) exp
(
−
∫ y

2x

B(2z)

1
2
κ
(
φ−1
x (2y)

)dz)1{y≥x/2}

obtained under appropriate regularity properties on the flow φ
via Xu = 2φXu−

(ζu) and the fact that

P(ζu ≥ t + dt, |ζu ≥ t,Xu−) = B
(
φXu−

(t)
)
dt.



Representation of P for Example 2

I Stochastic flow  formulas become more intricate.

I Under approriate regularity conditions, we have

P(x , dy1dy2) = p(x , y1, y2)dy1dy2

with p(x , y1, y2) given by

r
( y1
y1+y2

)
y1 + y2

B (y1 + y2)E
[ ∫ ∞

0
e−

∫ t
0 B(φx (s))ds dL

y1+y2
t (φx)

σ(y1 + y2)2

]
I Lyt (φx)t≥0 is the local time of φx(t)t≥0.

I Occupation times formula∫ t

0
ψ
(
s, φx(s)

)
ds =

∫ t

0

∫
X
ψ(s, y)dLys (φx)
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