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Disclaimer

> Lecture notes in progress!

» Will be updated according to the wishes of the audience
(hopefully!)

» Bibliography still to be processed!



Overview and informal structure of the study

» Work in progress!
» Falls into the scope of statistical inference with PDE.

» Statistical setting: We have (i) data ZV and (ii) a parameter
of interest f. Asymptotics are taken as N — oo.

» Structure of the problem:

Hn(ZV) =0 for some SDE Hy,
7N ¢ limiting object,
H(E, f) =0 for some PDE H.

» Objective: recover f from the observation of ZV, or a proxy
ZN of ZN.



Overview and informal structure of the study

» We need to specify several objects and a methodology
1. What are ZN and f? (and therefore the meaning of Hy and
H)
2. What is N7
3. What do we mean by a proxy ZN of ZN?
4. What do we mean by recovering f (as N — 00)?
» We do not have a “nice theory” at this stage. We will rather
explore these questions via several examples.
» We have a relatively complete picture in some cases.
» For other examples, we have more questions than answers!



Paradigmatic examples

1. Cell division: growth-fragmentation models

» Age-structured models and the renewal equation
» Size-structured models

2. General bifurcating models

3. Human population models for demography ~- Lecture |l

» Cohort effects in human mortality
» Towards nonlinearity

4. Models of interacting neurons ~» Lecture IV

» Spikes models
» Hawkes models

5. More nonlinear models in a mean-field limit ~ Lecture IV



Paradigmatic examples

Cell division: growth-fragmentation models



Example 1: Growth-fragmentation models

» We consider (simple) branching processes with deterministic
evolution between jump times.

» Such models appear as toy models for population growth in
cellular biology.

» We wish to statistically estimate the parameters of the model,
in order to ultimately discriminate between different
hypotheses related to the mechanisms that trigger cell
division.



Example 1: Growth-fragmentation models

» We structure the model by state variables for each individual
like size, age, growth rate, DNA content and so on.
» The evolution of the particle system is described by a common
mechanism:
1. Each particle grows by ingesting a common nutrient =
deterministic evolution.
2. After some time, depending on a structure variable, each
particle gives rise to k = 2 offsprings by cell division =
branching event.

» Goal: estimate the branching rate as a function of age or size
(or both).



Figure: Evolution of a E. Coli population.



Figure: Evolution of a E. Coli population.
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Figure: Evolution of a E. Coli population.



Growth-fragmentation models, informal description

» The growth of a cell size follows the deterministic evolution

aX(t) _
= k(X (t))dt.

» A mother cell of size x and age a splits into two daughter cells
with a division rate B depending on its age a or size x.

> 1 cell of size x gives birth to 2 cells of size x/2.



Example 1: mathematical description

v

M the set of finite point measures on R} = [0, c0).
For M € Mg and test function ¢ > 0:

v

(M,1)

(M.g) = /[0 PAIML) = D L)

i=1

for a finite (ordered) family (x;) <> M of nonnegative x;.

v

Evaluation maps: xj : Mg — [0,00) : M — x;(M) = x;.

v

In particular (M, 1) = size of the population M.



Example 1.1: An age-structured model

> (A"(t))lging = all the (ordered) ages of the cell population
at time t.

> Zp = 3N Oar) with N = (Z¢,1).
» The division rate a — B(a) is a function of age only!

Associated SDE:

Zt = TtZO+
t
/ Z / (25f—s - 63i(Zs—)+t75) Q(ds, di, dd)
0 i<(z., 1y70<0<B(ai(Z-))

» @ : Poisson random measure, intensity ds(zkZl S (di))do.
> Tt i 00 = D Oatt:



Example 1.1: An age-structured model

)
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Figure: A sample path of Z;(da)o<i<T with B(a) = a® and T =17.




Example 1.1: limiting object

v

N=Nr=(Zr,1) > o0 as T — 0.

v

Here N is random and the asymptotics are transferred to T.
Heuristically Zt ~ E[Z7(da)] = {7(da) = g(T, a)da.
g(t,x) is a weak solution to the renewal equation:

v

v

atg(tv a) + aag(ta a) + B(a)g(tv a) =0

g(0,2a) = go(a), g(t,0) =2 fOOO B(a)g(t,a)da.



Example 1.1: identification of the objects of interest

» We need to specify several objects and a methodology
1. What are ZV and f? (and therefore the meaning of Hy and

H)

2. What is N7

3. What do we mean by a proxy of Z"?

4. What do we mean by recovering f (as N — c0)?
» We have identified the following objects

o Nis (Zr,1).

[ ] ZN IS (Zt)OStST

o fis(t,a)— g(t,a) or a— B(a).

[ ]

HN and H are the SDE and the renewal equation.



Example 1.2: A size-structured model

> (X,-(t))1<,.<Nt = all the sizes of the cell population at time t.
> Zo = 3N Ox (o) with Np = (Z¢, 1),
» The division rate x — B(x) is a function of size only!

Associated SDE:
Zy = ¢Zo(t)+

t
(25¢X _ —(5¢X _ )Q(dS,d/,de)
/0 i<(Ze 1) /°<9<B(a-(zs Pt () T 0z ()

Ox(t) = k(dx(t)) with ¢x(0) = x.
> ¢zax() i O (8)-



Example 1.2: limiting object

v

N:NT:<ZT,1>—>ooas T — oo.

v

N is random and the asymptotics are transferred to T.
Heuristically Z7 ~ E[Z7(dx)] = &7(dx) = g(T, x)dx
g(t,x) is a weak solution to the transport-fragmentation
equation:

{ Org(t, x) + Ok (n(x)g(t, x)) + B(x)g(t, x) = 4B(2x)g(t, 2x)

v

v

g(0,x) = go(x) and g(t,0) = 0,t > 0.



Example 1.2: identification of the objects of interest

» Similarly to Example 1.1, we can identify the following objects
Nis (Z7,1).

ZN is (Zt)OStST-

fis (t,x) — g(t,x) or x — B(x).

HN and H are the SDE and the transport-fragmentation
equation.



Observation schemes, proxy of zZN

We will distinguish several observation schemes ZV depending on
the observation devices at hand:

(a) We observe the whole path ZV = (Z;)o<t<T
(b) We observe Z at a terminal time t = T. Two situations
> ZN = ZT.
» Z"is a n-sample of Zr, with n < N = (Z7,1). Our data is
thus a proxy of Zr with n — oo (as N — c0).
(c) 2N is realised as a subsample of size N of Z7 at certain
stopping times that correspond to branching events. Again,
we need N large as T — oo.



Observing Z via a genealogical representation

» We elaborate on the observation schemes (a), (b) and (c) by
means of a genealogical representation.

» The population evolution is associated with an infinite marked
binary tree

T= ] Gm Gm={0,1}", (Go=0).

meN
» To each cell or node u € T, we associate a node with size at
birth £, and lifetime (,.

» To each u € T, we associate a birth time b, and a time of
death d, so that {, = d, — b,,.



The process Z via a genealogical representation

We have the following identity between point measures

e Example 1.1 (age model)

Zt = Z 5t*bu1{bu§t<bu+<u}
ueT

e Example 1.2 (size model)

Zt = Z 6¢§u(t_bu)1{bugt<bu+4u}'
ueT



Observation scheme (a) and (b): temporal data

We introduce random subsets of T
> T = {uET,bu < T} = T7 U8 T, with

Tr={ueT,d,<T} and T7 ={ueT,b,<T <d,}

> In Example 1.1 (age model) for observation schemes (a) and
(b), we have

{ (Zt)o<e<T = {¢4 = min(dy, T) — by,u € T1},

Zt = {CL-,,_,U S aTT}



Temporal data

M H I i

Figure: Genealogical tree observed up to T =T for a time-dependent
division rate B(a) = a* (60 cells). In blue: Tt. In red: OTt.



Observation scheme (a) and (b): temporal data

> {Tr‘ and }07’7‘ are of the same order of magnitude.

» In Example 1.2 (size model), for observation schemes (a) and
(b), we have

{ (Zf)OStST = {CUT>§UT7 uc TT}7
ZT = {g;r’ ue aTT}7

with &7 =&, if dy < T and ¢, (T — by) otherwise.



Observation scheme (c): genealogical data

» Introduce the binary tree up to the first n-generations

m=0

» Observation scheme (c): informally, for some n > 1, we
observe ((y,&,) along a subset of T, called a g-regular tree.

» Definition
U, C T, is a p-regular tree if
1. ueU, = u €U, (u~ parent of u)
2. [UpNGy| =2 (0< 0 <1).

» Two extreme cases
e Dense case: U, =T,, with [U,| =2"! —1 (and o = 1).
e Sparse case: U, a single line along T, with [U,| = n (and
0=0).



Observation scheme (c): genealogical data

v

Take a p-regular tree U, with size N = k29",

v

Define the (now random) time

T =inf{t >0, Z; has visited all the nodes of U,}

v

The observation scheme is then ZN = (¢,,(,)uev,, extracted
from (Zt)Ogth-

N = k29" — 00 as n — 0.

v

v

Now, T = T(N,(Z:)e=0) — o0 as n — oo.



Temporal versus geneaological data: selection bias!

M H I i

Figure: Genealogical tree observed up to T =T for a time-dependent
division rate B(a) = a* (60 cells). In blue: Ur. In red: OUT.



Genealogical data

|

l

Figure: The same outcome organised at a genealogical level.

The handling of genealogical data (via discrete Markov chain
techniques) will prove significantly easier than temporal data.



Paradigmatic examples

General bifurcating models



General bifurcating models

» Observation scheme (c) ~~ digression on bifurcating Markov
chains models.

» Bifurcating Markov chains = Markov chains on binary trees.
» Extension to non-deterministic evolution between jumps.

» So far, evolution given by ¢, (t) = value of the trait at time t
with initial value x at t = 0:

e Example 1.1 (age model)
¢o(t) = t.
e Example 1.2 (size model)
dox(t) = £(64(D)) b, 64(0) = x € (0,00).

» We may think of more general flows in between jumps.



Example 2: more general flows

» Binary division triggered by a trait x € X C R.

v

The trait stochastically evolves according to

[ d0x(1) = 5(6x(£))dt + o (6x(1))dWe, 9x(0) = x|

r,o: X — X regular functions, (W;)>o standard BM.

v

A branching event occurs with probability

B(¢«(t))dt during [t,t + dt]

B: X — [0, 00) division rate.

v

At division, a particle with trait y is replaced by two particles
with traits y¢ and y(1 — ¢), where Law(9) = r(dy).
Parameters of the model : (k, 0, B, r).

v



Bifurcating Markov chains
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Figure: Example of a trajectory of a BMC and its associated genealogy.



Bifurcating Markov chains

» X a state space and P: X — X x X a Markov kernel.
> (S, F, (Fm)m>0,P) a filtered probability space.
» Notation: |u| = m for u € Gp,.
u0 = (u,0) € Gy, ul = (u,1) € Gy
PY(x) = [yon (X y1, y2)P(x, dyrdys).
Definition

A family of X-valued r.v. (X,)yer is @ BMC with transition P if
Xy is F|,-measurable and

E[ H wu(XwXuO,Xul)‘fm] = H ,Pwu(xu)

ueGn ueGn

for every m > 0 and any family of (bounded) functions (¢y)ucG,,-



Representation of P for Examples 1.1 and 1.2
» Example 1.1 X, = (, for the age model:

| P(x, dys dy2) = do(dy1) @ do(dly2) |

> Example 1.2 X, = &, for the size model:
P(x, dy1 dy2) = Q(x, y1)dy1 ® dy, (dy2)

with

B(2y) Y B(2z)
Qx,¥) = T 1, exp —/ — B _d47) 1,5,
%m(¢xl(2y)) ( oy %n(zb;l(zy)) ) {y=x/2}

obtained under appropriate regularity properties on the flow ¢
via X, = 2¢x (Cy) and the fact that

P(Cu > t+dt,[¢u > t, X,-) = B(ox _(t))dt.



Representation of P for Example 2

» Stochastic flow ~~ formulas become more intricate.

» Under approriate regularity conditions, we have
P(x, dy1dy2) = p(x;, y1, y2)dyrdy>

with P(Xa}/1a)/2) given by

Y1 0 yity
r(5) B (11 +y2)E{/ o= J3 Blox(s))ds ALt (¢x)
ity 0 o(y1 + y2)?

> LY (¢x)e>0 is the local time of ¢y (t)r>o0.

» Occupation times formula

/Ot¢(s, Px(s))ds = /Ot/Xw(S,y)dLg(@)
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