Statistical inference for structured models

Part II: Example 3 (Human population models). Statistical methodology

Marc Hoffmann, Université Paris-Dauphine PSL

Spring school SFB 1294, March 2019
Today’s program

- Example 3: Human population models
- Adaptive nonparametric estimation
 - Lepski's principle: soft heuristics
 - The Goldenshluger-Lepski method without pain \(\sim \) afternoon discussion session/Lecture III
Informal structure of the study

- **Statistical setting:** We have (i) data Z^N and (ii) a parameter of interest f. Asymptotics are taken as $N \to \infty$.

- **Structure of the problem:**

 $$\mathcal{H}_N(Z^N) = 0 \text{ for some SDE } \mathcal{H}_N,$$
 $$Z^N \to \xi \text{ limiting object},$$
 $$\mathcal{H}(\xi, f) = 0 \text{ for some PDE } \mathcal{H}.$$

- **Objective:** recover f from the observation of Z^N (or a proxy Z^N of Z^N).
Example 3 (Lecture I continued): Human population models

Statistical experiments and methodology

Adaptive nonparametric estimation

Nonparametric estimation
Paradigmatic examples

1. Cell division: blue growth-fragmentation models
 ▶ Age-structured models and the renewal equation
 ▶ Size-structured models
2. General bifurcating models
3. Human population models for demography
 ▶ Cohort effects in human mortality
 ▶ Towards nonlinearity
4. Models of interacting neurons \(\rightsquigarrow\) Lecture IV
 ▶ Spikes models
 ▶ Hawkes models
5. More nonlinear models in a mean-field limit \(\rightsquigarrow\) Lecture IV
Motivation: improving mortality estimates

- Mortality table = mortality rates for several **age classes** (with length one or several years), at several **periods** in time (usually each year)
- Mortality tables ↝ **age shape of mortality and dynamics over time**

Figure: *Left:* Mortality rate, 2008, France, as a function of age (log-scale). *Right:* Mortality table by age and time
A (very) brief history of demographics

- The first mortality table appeared in 1662 by John Graunt estimation of death probabilities as a function of age.
- 1865: graphical formalizations of life trajectories within a population by Lexis and his contemporaries.

Figure: Examples of the so-called 'Lexis Diagram'

- The first demographers understood that it is crucial to (i) keep a non-homogeneous picture and (ii) the measurement of the mortality rate depends on an underlying population dynamics.
Recent awareness about anomalies

- **Cohort effects** have long fascinated demographers.

Figure: *Left:* monthly births in France. *Right:* artefact (?) cohort effects in mortality improvements from crude tables of the Human Mortality Database.

- Richards (2008) suggested that **cohort effects** could be artefacts caused by **anomalies in the calculation of death rates** due to shocks in birth patterns.
Recent awareness about anomalies

- Cairns et al. (2016) confirm Richards’ conclusions with England and Wales data completed on monthly fertility data.
- Boumezoued (2016) aggregates the (HMD) database and the (HFD) database and suggests that these anomalies are universal.

Figure: Mortality rates estimates before (left) and after (right) correction from Boumezoued (2016).
Example 3: identification of the objects of interest

- $F, B : \mathbb{R}_+ \times \mathbb{R}_+ \rightarrow \mathbb{R}_+$ model parameters.
- $F(t, a)$: fertility rate of the population with age a at time t.
- $B(t, a)$: mortality rate of the population with age a at time t.
- $Z_0 \in \mathcal{M}_F$: initial age distribution of the population at time $t = 0$.
Example 3: evolution equation

- $\left(A_i(t) \right)_{1 \leq i \leq N_t} = \text{all the ages of the population at time } t.$
- $Z_t = \sum_{i=1}^{N_t} \delta A_i(t)$ with $N_t = \langle Z_t, 1 \rangle.$
- Associated SDE

\[
Z_t = \tau_t Z_0 + \int_0^t \sum_{i \leq \langle Z_s, 1 \rangle} \int_{0 \leq \theta \leq F(s, a_i(Z_s -))} \delta_{t-s} Q(ds, di, d\theta) \\
- \int_0^t \sum_{i \leq \langle Z_s, 1 \rangle} \int_{0 \leq \theta \leq B(s, a_i(Z_s -))} \delta_{a_i(Z_s -) + t-s} \tilde{Q}(ds, di, d\theta)
\]

- Q, \tilde{Q} independent Poisson random measures, intensity $ds \left(\sum_{k \geq 1} \delta_k(di) \right) d\theta.$
Microscopic evolution equation

Figure: Left: Sample path of $Z_0(da)$ and its evolution without births. Right: Sample path of $(Z_t(da), t \in [0, T])$.
Large population limit

- **Large population limit** approach: $Z_0 \rightsquigarrow Z_0(N)$, $N \geq 1$, with $\langle Z_0(N), 1 \rangle \approx N$.
- N reminiscent of a (large) population size.
- **Renormalisation**: $Z_t \rightsquigarrow Z_t/N =: Z^N_t$ (thus $Z^N_0 = N^{-1}Z_0(N)$) yields

\[
\begin{align*}
Z^N_t &= \tau_t Z^N_0 \\
+ N^{-1} \int_0^t \sum_{i \leq \langle NZ^N_s, 1 \rangle} \int_{0 \leq \theta \leq F(s, a_i(Z^N_s))} \delta_{t-s}(da)Q(ds, di, d\theta) \\
- N^{-1} \int_0^t \sum_{i \leq \langle NZ^N_s, 1 \rangle} \int_{0 \leq \theta \leq B(s, a_i(Z^N_s))} \delta_{a_i(Z^N_s)+t-s}(da)\tilde{Q}(ds, di, d\theta).
\end{align*}
\]
Example 3: large population limit

- $N \to \infty$ abstract asymptotic parameter.
- Reminiscent of a population size: $\langle NZ_t^N, 1 \rangle \approx N$ for every $t \in [0, T]$.
- T is fixed throughout!
- If $Z_0^N \approx g_0(a) da$, then $Z_t^N(da) \approx \xi_t(da) = g(t, a) da$.
- $g(t, a)$ weak solution to the McKendrick & Von Foerster equation

\[
\begin{aligned}
\frac{\partial}{\partial t} g(t, a) + \frac{\partial}{\partial a} g(t, a) + B(t, a) g(t, a) &= 0, \\
g(0, a) &= g_0(a), \quad g(t, 0) = \int_{\mathbb{R}^+} F(t, a) g(t, a) da.
\end{aligned}
\]
Example 3: large population limit

We can identify the following objects

- $N \to \infty$ is arbitrary, reminiscent of the population size $\langle Z^N_t, 1 \rangle$ for every $t \in [0, T]$.
- Z^N is $(Z^N_t)_{0 \leq t \leq T}$ and we observe $Z^N = Z^N$.
- f is any of the functions $(t, a) \mapsto g(t, a), F(t, a)$ or $B(t, a)$.
- \mathcal{H}^N and \mathcal{H} are the SDE and the McKendrick & Von Foerster equation.
Example 3 (Lecture I continued): Human population models

Statistical experiments and methodology

Adaptive nonparametric estimation

Nonparametric estimation
From Z^N to a statistical experiment.

- We have a stochastic model $(Z_t)_{1 \leq t \leq T}$, as a time evolving point measure where either
 - $\langle Z_T, 1 \rangle$ is large when T is large, T deterministic or random (stopping time).
 - T is fixed but $Z_t = Z^N_t$ depends on a renormalisation parameter N and $\langle Z^N_t, 1 \rangle$ is large for every t when N is large.
- $N \rightarrow \infty$ asymptotic parameter.
- We write Z^N for $(Z_t)_{0 \leq t \leq T(N)}$ or $(Z^N_t)_{0 \leq t \leq T}$.
- We extract from Z^N an observation Z^N.
The experiment generated by \mathcal{Z}^N

- \mathcal{Z}^N generates (a sequence of) statistical experiment

$$\left\{ P^N_{B,k}, B \in \mathcal{B}, k \in \mathcal{K} \right\}_{N \geq 1}$$

B: parameter of interest, k nuisance parameter (possibly known, usually functional).

- $B: [0, \infty) \times [0, \infty) \to [0, \infty)$ belongs to a functional class.

- We need a methodology for recovering B non-parametrically.
Nonparametric estimation

- **Experiment:** $\mathcal{E}^N = \{ \mathbb{P}_{B,k}^N, B \in \mathcal{B}, k \in \mathcal{K} \}$.
- **Objective:** recover $B(t, a)$ with $B \in \mathcal{B}$ from data \mathcal{Z}^N.
- $\hat{B}^N(t, a) = \hat{B}^N(\mathcal{Z}^N, (t, a))$ estimator of $B(t, a)$.
- **Reconstruction criterion**

 \[
 \mathcal{R}^N(\hat{B}^N(t, a), B) = \sup_{B \in \mathcal{B}, k \in \mathcal{K}} \mathbb{E}_{B,k}^N \left[\left(\hat{B}^N(t, a) - B(t, a) \right)^2 \right]
 \]

- $\nu_N \to 0$ is an admissible rate of convergence for estimating $B(t, a)$ over \mathcal{B} if there exists $\hat{B}^N(t, a)$ such that

 \[
 \sup_N \nu_N^{-2} \mathcal{R}^N(\hat{B}^N(t, a), B) < \infty.
 \]
Nonparametric estimation

- Sometimes, we only require the (weaker) tightness of

\[(v_N^{-1}(\hat{B}_N(t, a) - B(t, a)))_{N \geq 1}, \]

uniformly in \(B \in \mathcal{B} \), meaning

\[\sup_{B \in \mathcal{B}, k \in \mathcal{K}} \mathbb{P}^N_{B,k}(v_N^{-1}|\hat{B}_N(t, a) - B(t, a)| \geq K) \to 0, \quad K \to \infty. \]

- \(\hat{B}_N^*(t, a) \) is minimax optimal if

\[\mathcal{R}^N(\hat{B}_N(t, a), B) \approx \inf_F \mathcal{R}^N(F, B) \text{ as } N \to \infty, \]

infimum taken over all estimators \(F \) of \(B(t, a) \) from \(\mathcal{Z}_N \).
Example 3 (Lecture I continued): Human population models

Statistical experiments and methodology

Adaptive nonparametric estimation
Nonparametric estimation
Nonparametric estimation in density estimation

- Let us consider an apparently different problem: estimate a probability distribution \(g(t, a) \) from a (IID) drawn

\[Z^N \leftrightarrow (T_1, A_1), \ldots, (T_N, A_N). \]

- Statistical objective: pointwise estimation of \(g(t, a) \).
- Assumption: \(g \in L^\infty_{\text{loc}} + \) local smoothness properties.
- Anisotropic Hölder space \(\mathcal{H}^{\alpha,\beta} \):

\[g \in \mathcal{H}^{\alpha,\beta} \iff \begin{cases} t \mapsto g(t, a) \in \mathcal{H}^\alpha, \forall a, \\ a \mapsto g(t, a) \in \mathcal{H}^\beta, \forall t, \end{cases} \]

where \(\mathcal{H}^s \) is the usual (univariate) Hölder space.

\((x \mapsto f(x)) \in \mathcal{H}^s, s = n + \{s\}, \) \(n \) integer, \(0 < \{s\} \leq 1 \) iff

\[\|f\|_{L^\infty} + \sup_{x,y} \frac{|f^{(n)}(y) - f^{(n)}(x)|}{|y-x|^{\{s\}}} < \infty. \]
Preparation: anisotropic estimation

- **Kernel reconstruction**: Pick a smooth and compactly supported product kernel K

 $$K(t, a) = K^{(1)}(t)K^{(2)}(a).$$

- **L^1-normalisation**: for $h = (h_1, h_2)$, $h_i > 0$:

 $$K_h(t, a) = (h_1 h_2)^{-1} K^{(1)}(h_1^{-1} t) K^{(2)}(h_2^{-2} a).$$

- **Kernel estimation**

 $$\hat{g}_h^N(t, a) = \int_0^T \int_{\mathbb{R}^+} K_h(t - s, a - u) Z^N(ds, du).$$

 where $Z^N(ds, du) = N^{-1} \sum_{i=1}^{N} \delta_{(T_i, A_i)}(ds, du)$.
Nonparametric estimation in density estimation

▶ Error analysis: standard bias + variance decomposition.

▶ Bias analysis:

\[g_h(t, a) = \int_0^T \int_{\mathbb{R}^+} K_h(t - s, a - u)g(s, u)duds. \]

▶ Assume \(g \in \mathcal{H}^{\alpha, \beta}. \) Then

\[|g(t, a) - g_h(t, a)| \lesssim |g|_{\mathcal{H}^{\alpha, \beta}} (h_1^{\alpha \wedge (L+1)} + h_2^{\beta \wedge (L+1)}) \]

\((L = \text{order of the kernel: } \int x^\ell K(x)dx = 1_{\{\ell=0\}} \text{ for } \ell = 0, \ldots, L. \)

▶ Remark: different (equivalent) choices for \(|g|_{\mathcal{H}^{\alpha, \beta}}. \)
Nonparametric estimation in density estimation

- **Variance analysis:**

\[
\text{Var}(\hat{g}_N, h(t, a)) \leq N^{-1} \int_0^T \int_{\mathbb{R}^+} K_h(t - s, a - u)^2 g(s, u) ds du \\
\leq N^{-1} \|K_h\|^2_{L^2} |g|_{L^\infty_{\text{loc}}} = |K|^2_{L^2} |g|_{L^\infty_{\text{loc}}} N^{-1} h_1^{-1} h_2^{-1}.
\]

- **Window optimisation** \(h = h^* \) yields error bound

\[
\sup_{g} \mathbb{E} \left[(\hat{g}_{N}^{h^*}(t, a) - g(t, a))^2 \right] \lesssim N^{-2s(\alpha, \beta)/(2s(\alpha, \beta)+1)}
\]

with **effective smoothness**

\[
\frac{1}{s(\alpha, \beta)} = \frac{1}{\alpha} + \frac{1}{\beta}.
\]

- **Supremum over (local) Hölder balls, minimax optimality.**
Towards adaptive estimation

We have established

\[
\mathbb{E}\left[(\hat{g}^N_{h^*}(t, a) - g(t, a))^2 \right] \lesssim (K_{h_1, h_2} \ast g(t, a) - g(t, a))^2 + \left(\frac{1}{\sqrt{Nh_1 h_2}} \right)^2
\]

\[=: \mathbb{B}_h(g) + V_N^h\]

- **Oracle estimation**: look for \(h = \hat{h}(Z^N) \) so that

\[
\mathbb{E}\left[(\hat{g}^N_{h^*}(t, a) - g(t, a))^2 \right] \lesssim \inf_{h \in \mathcal{H}} (\mathbb{B}_h(g) + V_N^h).
\]

- **Need** \(\mathcal{H} \) rich enough so that it can mimick the optimal bandwidth \(h^* \) if \(g \in \mathcal{H}^{\alpha, \beta} \).

- If \((\alpha, \beta)\) unknown \(\leadsto\) adaptive estimation \(\leadsto\) Lepski’s principle.