
Statistical inference for structured models

Part III: Lepski’s principle. Estimation in bifurcating models.

Marc Hoffmann, Université Paris-Dauphine PSL
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Today’s program

I About nonparametric adaptive estimation

• Lepski’s principle: soft heuristics
• The Goldenshluger-Lepski method without (too much) pain

I Estimation in bifurcating models

• Age dependent model
• Size dependent model
• Estimation in arbitrary BMC models



Lepski’s principle
Lepski’s principle for two hypotheses
The Goldenshluger-Lepski method

Estimation in bifurcating models
Age dependent model
Size dependent model
Estimation in arbitrary BMC models



Setting

I Goal: estimate a probability distribution g(t, a)dtda from a
(IID) drawn

ZN(ds, du) = ZN(ds, du) = N−1
N∑
i=1

δ(Ti ,Ai )(ds, du).

I Kernel estimator:

ĝN
h (t, a) =

∫ T

0

∫
R+

Kh(t − s, a− u)ZN(ds, du).

I We have established, if g ∈ Hα,β

E
[(
ĝN
h?(t, a)− g(t, a)

)2
]
. Bh(g) + VN

h

≈
(
hα1 + hβ2

)2
+
( 1√

Nh1h2

)2



Lepski’s principle for two hypotheses

I Simplification: g(t, a) ≡ g(a) ∈ Hα with α ∈ {αmin, αmax},
αmin < αmax.

I Let hN(α) =
(
N(logN)−1)−1/(2α+1).

I Pivotal observable quantity:∣∣ĝhN(αmin)(a)−ĝhN(αmax)(a)
∣∣ =

∣∣(KhN(αmin)−KhN(αmax))?ZN(a)
∣∣.

I To be compared with N−αmin/(2αmin+1).

I Presence of an extra logarithmic factor for the control of
stochastic deviations  ignored in a first approach.



Lepski’s principle heuristics

I Not a valid proof!

I If α = αmin, with overwhelming probability (ignoring log
terms)

KhN(αmin) ? ZN(a)− g(a) ≈ N−αmin/(2αmin+1)

and

KhN(αmax) ? ZN(a)− g(a) ≈ hN(αmax)αmin + N−1/2hN(αmax)−1/2

= N−αmin/(2αmax+1) + N−αmax/(2αmax+1)

≈ N−αmin/(2αmax+1)

� N−αmin/(2αmin+1).

I Summing-up, if α = αmin∣∣KhN(αmin) ? ZN(a)− KhN(αmax) ? ZN(a)
∣∣� N−αmin/(2αmin+1).



Lepski’s principle heuristics

I Conversely, if α = αmax, with overwhelming probability
(ignoring log terms)

KhN(αmin) ? ZN(a)− g(a) ≈ hN(αmin)αmax + N−1/2hN(αmin)−1/2

= N−αmax/(2αmin+1) + N−αmin/(2αmin+1)

≈ N−αmin/(2αmin+1)

and

KhN(αmax)?ZN(a)−g(a) ≈ N−αmax/(2αmax+1) � N−αmin/(2αmin+1).

I Summing-up, if α = αmax∣∣KhN(αmin) ? ZN(a)− KhN(αmax) ? ZN(a)
∣∣≈ N−αmin/(2αmin+1).



Lepski’s principle: recap

I ĝN
h (a) = Kh ? ZN(a).

I H =
{(

N
log N

)−1/(2αmin+1)
,
(

N
log N

)−1/2(αmax+1
}

.

I Data driven bandwidth: hN? = hN? (ZN) solution to

hN? = max
{
h ∈ H,∀η ≤ h,

∣∣ĝN
h (a)− ĝN

η (a)
∣∣ ≤ C

(
log N
Nη

)1/2}
I Final estimator: ĝN

hN?
(a) satisfies the estimate

E
[(
ĝN
hN?

(a)−g(a)
)2]
.

{ (
N

log N

)−αmax/2(αmax+1)
if g ∈ Hαmax(

N
log N

)−αmin/2(αmin+1)
if g ∈ Hαmin

I Smoothness adaptation over the scale Hα for
α ∈ {αmin, αmax}.

I The risk bound inflation by a logN term is unavoidable.



The Goldenshluger-Lepski method

I Modern formulation of Lepski’s principle in terms of oracle
inequalities.

I Again, we keep-up with the 1-dimensional case for simplicity.

I We look for ĥ? = ĥ?(ZN) so that

E
[(
ĝN
h?(a)− g(a)

)2]
. inf

h∈H

(
Bh(g)2 + VN

h

)
.



The GL method

I Auxiliary oversmoothed estimator

ĝh,η(a) = N−1
N∑
i=1

Kh ? Kη(x − Ai ), h, η ∈ H.

I ĝh,η(a) = ĝη,h(a).

I ĝh,η(a) = ĝh+η(a) for K (x) = (2π)−1/2 exp(−1
2x

2).

I GL principle: for fixed h ∈ H, we let η run through H and
compare ĝh to ĝh,η



The GL method: the fundamental quantities

I Construction of the GL estimator

Bh(η) =
{∣∣ĝη(a)− ĝh,η(a)

∣∣− χ(η)
}

+
,

ĥ = Argminh∈H
(
Bh + χ(h)

)
, Bh = max

η∈H
Bh(η),

GL-estimator : ĝ
ĥ
(a).

I Handwaving heuristics:

• χ(η)→∞ as η → 0 appropriate random fluctuation control
threshold.

• Bh(η) is computable and hopefully close to its expectation in
a certain sense

• Picking ĥ amounts to take something like

ĥ ≈ max
{
h ∈ H, ∀η ≤ h :

∣∣ĝη(a)− ĝh,η(a)
∣∣ . (Var(ĝη)

)1/2}
.



Soft proof of the GL method

I Step 1: for every h ∈ H:∣∣ĝ
ĥ
(a)− g(a)

∣∣ ≤ 2
(
Bh + χ(h)

)
+
∣∣ĝh(a)− g(a)

∣∣ (?)

I Step 2: Fundamental control of E[|Bh|2]:

Bh = max
η∈H

Bh(η) = max
η∈H

{
|ĝη(a)− ĝh,η|+ χ(η)

}
+

≤max
η∈H

{
ζη − χ1(η)

}
+

+ max
η∈H

{
ζh,η − χ2(η)

}
+

+ max
η∈H

∣∣E[ĝη(a)]− E[ĝh,η(a)]
∣∣.

• χ = χ1 + χ2, ζ(h),η = ĝ(h),η(a)− E[ĝ(h),η(a)].
• Last term:

maxη∈H |Kη ? g − Kη ? Kh ? g |∞ . |K |1|g − Kh ? g |∞.
• First two stochastic terms: concentration inequalities.



Soft proof of the GL method

I Concentration inequality

Proposition (Benett, Bernstein)

−b ≤ Yi ≤ b independent r.v. such that
∑N

i=1 E[Z 2
i ] ≤ v . With

λ(u) =
√

2vu + 2
3bu, we have

P
( N∑
i=1

Zi − E[Zi ] ≥ λ(u)
)
≤ exp(−u).

I Applied to Yi = N−1Kη(x − Ai ) or Kh ? Kη(x − Ai ) yields
appropriate λη (resp.h)(u) = λN,η (resp. h),K ,|g |∞(u).

I Set finally χi (η) = λ(γ| log η|), i = 1, 2, γ > 0 to be specified.

I The first two stochastic terms are of order N−1
∑

η∈H η
γ−1.



Soft proof of the GL method

I We piece all the estimates together, take E[(·)2] and minh:

E
[(
ĝ
ĥ
(a)− g(a)

)2]
.min

h∈H

[
E[(ĝh(a)− g(a))2] + | log h|

Nh +

+ |Kh ? g − g |2∞
]

+ N−1
∑
η∈H

ηγ−1.

I Choose H sufficiently rich to approximate
hN(α) = N−1/(2α+1) while N−1

∑
h∈H η

γ−1 . minimax rate.

I It remains to prove (?)...



Soft proof of the GL method

I Completely deterministic argument:

|ĝ
ĥ
(a)− g(a)| ≤

{
|ĝ

ĥ
(a)− ĝ

h,ĥ
| − χ(ĥ)

}
+

+ χ(ĥ)

+
{
|ĝ

ĥ,h
− ĝh(a)| − χ(h)

}
+

+ χ(h)

+ |ĝh(a)− g(a)|.

I First term in the RHS: Bh(ĥ) + χ(ĥ) ≤ maxη∈HBh(η) + χ(ĥ)

I Second term in the RHS similar: ≤ maxη∈HB
ĥ
(η) + χ(h).

I Adding and regrouping, we obtain

B
ĥ

+ χ(ĥ) + Bh + χ(h) ≤ 2(Bh + χ(h))

by construction of ĥ.

I
∣∣ĝ

ĥ
(a)− g(a)

∣∣ ≤ 2
(
Bh + χ(h)

)
+
∣∣ĝh(a)− g(a)

∣∣ (?) follows.
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Estimation in bifurcating models

I We turn back to our PDE related stochastic models.

I We start with growth-fragmentation models for the simplest
observation scheme: we observe

ZN =
{

(ζu, ξu), u ∈ U%n
}
,

where

• (ζu, ξu) = (life length, size at birth) of the individual u.
• U%n is a %-regular tree of size N ≈ 2n%.

I The underlying stochastic tools are Markov chains on trees.

I For age-dependent division, the statistical model has a
particularily simple structure.



Growth-fragmentation: the age dependent model

I The associated deterministic model is
∂tg(t, a) + ∂ag(t, a) + B(a)g(t, a) = 0

g(0, a) = g0(a), g(t, 0) = 2
∫∞

0 B(a)g(t, a)da.

I We are interested in recovering a 7→ B(a) from data

ZN =
{

(ζu, ξu), u ∈ U%n
}
.

I The data (ξu)u∈U%n are irrelevant here and we discard them.

I The data (ζu)u∈U%n are independent and identically distributed
with common density

P(ζu ∈ da) = B(a) exp
(
−
∫ a

0
B(u)du

)
da



Growth-fragmentation: the age dependent model

I The formula can be inverted: if fB(a)da = P(ζu ∈ da), we also
have

B(a) =
fB(a)

1−
∫ a

0 fB(u)du

provided
∫∞

B =∞, an assumption in force from now on.

I Let N = |U%n| ≈ 2n%. Let

B̂N
h (a) =

N−1
∑

u∈U%n Kh(a− ζu)

max(N−1
∑

u∈U%n 1{ζu≥a}, $N)

for some (technical) threshold $N → 0.

I Numerator eligible to data-driven bandwidth selection
according to Lepski’s principle h hN? .

I Denominator converges to 1−
∫ a

0 fB(u)du at rate N−1/2

strongly.



Growth-fragmentation: the age dependent model

I (H1) B consists of (uniformly) bounded functions such that∫∞
B =∞.

Theorem
Under (H1), for 0 < αmin < αmax , there exists a choice of H such
that

1. The GL bandwidth hN? satisfies

E
[(
B̂N
hN?

(a)− B(a)
)2]
. inf

h∈H

(
Bh(fB) + VN

h

)
+ N−1 .

2. Moreover, for every α ∈ [αmin, αmax]:

sup
B∈B∩Hα

E
[(
B̂N
hN?

(a)− B(a)
)2]
.
( logN

N

)2α/(2α+1)

where Hα is a (locally around a) Hölder ball.

I The result is minimax adaptive optimal.



Growth-fragmentation: the size dependent model

I We start with a singe cell of size x0.

I For simplicity, the cell grows exponentially according to a
constant rate τ > 0:

dX (t)

dt
= κ

(
X (t)

)
dt = τX (t)dt.

I The mother cell gives rize to two children, at a size dependent
rate x 7→ B(x).

I The two children have initial size x1/2, where x1 is the size of
the mother at division.

I They grow independently according to the rate τ and divide
according to the rate B(x).



Growth-fragmentation: the size dependent model

I We observe
ZN =

{
(ζu, ξu), u ∈ U%n

}
,

where

• (ζu, ξu) = (life length, size at birth) of the individual u.
• U%n is a %-regular tree of size N ≈ 2n%.

I We look for an analog of the inversion formula
P(ζu ∈ da)↔ B(a) obtained in the age-dependent model.

I The ξu and the ζu are not independent – not identically
distributed – anymore!

I They however form a Markov chain along branches of the
genealogical tree 7→ bifurcating Markov chain.



Growth-fragmentation: the size dependent model

I If u− denotes the parent of u, we have

2ξu = ξu− exp
(
τζu−

)
.

I τ is identified via the observation of a single (ζu− , ξu− , ξu).

I We have

P(ζu ∈ [t, t + dt] |ζu ≥ t, ξu = x) = B(xeτ t)dt

that entails the density of the lifetime ζu− conditional on
ξu− = x :

t 7→ B(xeτ t) exp
(
−
∫ t

0
B(xeτs)ds

)
.



Growth-fragmentation: the size dependent model

I We can derive a simple and explicit representation for the
transition kernel KB(x , dx ′) of the underlying Markov chain:

KB(x , x ′)dx ′ = P
(
ξu ∈ dx ′

∣∣ ξu− = x
)

=
B(2x ′)

τx ′
1{x ′≥x/2} exp

(
−
∫ x ′

x/2

B(2s)
τs ds

)
dx ′.

I The inversion formula is obtained by looking at the equation∫
x∈R+

νB(dx)KB(x , x ′)dx ′ = νB(dx ′)

that charaterises the invariant probability measures
νB(dx) = νB(x)dx of KB .



Growth-fragmentation: the size dependent model

I Expand the invariant measure equation νBKB = νB

νB(x ′) =

∫ ∞
0

νB(x)KB(x , x ′)dx

=
B(2x ′)

τx ′

∫ 2x ′

0
νB(x) exp

(
−
∫ x ′

x/2

B(2s)
τs ds

)
dx

=
B(2x ′)

τx ′

∫ ∞
0

∫ ∞
0

1{x ≤ 2x ′, s ≥ x ′}νB(x)KB

(
x , s
)
dsdx .

I This yields the key representation

νB(x) =
B(2x)

τx
PνB
(
ξu− ≤ 2x , ξu ≥ x

)
with PνB =

∫∞
0 νB(dx)P

(
· | ξ∅ = x

)
.



Growth-fragmentation: the size dependent model

I We obtain the representation formula

B(x) =
τx

2

νB(x/2)

PνB
(
ξu− ≤ x , ξu ≥ x/2

) .
I But! We always have {ξu− ≥ x} ⊂ {ξu ≥ x/2}, hence

PνB
(
ξu− ≤ x , ξu ≥ x/2

)
= PνB

(
ξu ≥ x/2)− PνB (ξu− ≥ x

)
=

∫ ∞
x/2
−
∫ ∞
x

=

∫ x

x/2
νB(u)du.

I Remark: the general inversion formula still allows for some
room (if τ = τu is tree-dependent and random for instance)



Growth-fragmentation: the size dependent model

I In turn, we obtain the final representation

B(x) =
τx

2

νB(x/2)∫ x
x/2 νB(u)du

I This yields the kernel-based estimator

B̂N
h (x) =

τx

2

N−1
∑

u∈U%n Kh(ξu − x/2)

max(N−1
∑

u∈U%n 1{ξu− ≤ x , ξu ≥ x/2}, $N)

for some (technical) threshold $N → 0.

I The study of the convergence of empirical means is more
involved.



Convergence of empirical means

I Notation: Km
B ϕ(x) = KB(Km−1

B ϕ)(x) with

KBϕ(x) =

∫ ∞
0

ϕ(x ′)KB(x , x ′)dx ′ = E
[
ϕ(ξu) | ξu− = x

]
.

I (H2) infB∈B infx B(x) > 0.

Proposition

Under (H1), (H2), the invariant probability νB is well defined and
there exists ρB < 1 such that for V(x) = 1 + x2, we have

sup
|ϕ|≤V

∣∣Km
B ϕ(x)− 〈ϕ, νB〉

∣∣ . ρmB V(x).



Convergence of empirical means

I Result uniform in B ∈ B and τ over compact sets of (0,∞).

I Proof: classical, relies on the existence of a Lyapunov function
V(x) ≥ 1 s.t.

KBV(x) ≤ λV(x) + C and inf
|x |≤C

K (x , dx ′) ≥ λµ(dx ′)

for some 0 < λ < 1, C > 0 and a probability measure µ.

I Enables one to control covariance terms:

E
[
ϕ(ξu)ϕ(ξv )

]
= E

[
K
|u|−|u∧v |
B ϕ(Xu∧v )K

|v |−|u∧v |
B ϕ(Xu∧v )

]
,

u ∧ v = most recent common ancestor between u and v .



Convergence of empirical means

I Two difficulties:

1. Order of the covariance terms in terms of ϕ usually needs a
control in | · |2-norm.

2. Competition between growth of the binary tree (geometric rate
= 2) and decorrelation (geometric rate = ρB).

I Answer 1: Assume for simplicity that E[ϕ(ξu)] = E[ϕ(ξu)] and
|u| ≤ |v |. The last term is bounded above by

E
[
ϕ(ξu)ϕ(ξv )

]
. min

(
ρ
d(u,v)
B |ϕ|2∞, ρ

|v |−|u∧v |
B |ϕ|∞|ϕ|1

)
,

d(u, v) = graph distance between u and v .

I Answer 2: Sufficient condition: ρB <
1
2 .



Convergence of empirical means

I (H3) We have supB∈B ρB <
1
2 .

I Let MUρn (ϕ) = N−1
∑

u∈Uρn ϕ(ξu).

Proposition

Under (H1), (H2), (H3), for any initial condition µ, we have

Eµ
[(
MUρn (ϕ)− 〈ϕ, νB〉

)2]
. N−1

(
|ϕ|2L2(µ+νB) + (1 + |V|2L2(µ))|ϕ|∞|ϕ|νB

)
uniformly in B.
I This results holds in wider generality for bifurcating Markov

chains:

• Arbitrary deterministic flows between jumps.
• Random flows (diffusions) between jumps.
• Test functions on forks: ϕ(ξu) ψ(ξu, ξu0, ξu1).



Nonparametric estimation of B(x)

I With the specification hN = N−1/(2α+1), the variance bound
is sufficient to obtain

sup
B∈B∩Hα

Eµ
[(
B̂N
hN (x)− B(x)

)2]
. $−2

N N−2α/(2/α+1)

for any µ(dx ′)� dx ′ locally around x .

I The rate is minimax nearly-optimal but non-adaptive!

I In order to extend the result to adaptation, we need
concentration properties.

I We need a stringent restriction: uniform geometric ergodicity.



Uniform geometric ergodicity

I The kernel K is uniformly geometrically ergodic if∣∣Km
B ϕ(x)− 〈ϕ, νB〉

∣∣ . |ϕ|∞ρmB .
I This amounts to have a bounded Lyapunov function V.

I We have a sufficient (but slightly artificial) condition that
implies uniform geometric ergodicity and (H3):

I (H2′) B : (bmin, bmax)→ R+ with 2bmin < bmax and∫ bmax

u−1B(u)du =∞,
∫
bmin

u−1B(u)du . 1.

I (H1′) B contains continuous and locally bounded functions
with appropriate uniformity conditions.



Concentration properties

I Let Σn(ϕ) = |ϕ|22 + min1≤`≤n−1

(
|ϕ|212` + |ϕ|2∞2−`

)
Theorem
Work under (H1′), (H2′), (H3) and (H4). For δ & N−1|ϕ|∞, we
have

P
(
MUρn (ϕ)− 〈ϕ, νB〉 ≥ δ

)
≤ exp

(
− CB

Nδ2

Σn(ϕ) + |ϕ|∞δ
)

with supB∈B CB <∞.
I The result extends to

• More general BMC models (under uniform geometric
ergodicity).

• Test functions on forks: ϕ(ξu) ψ(ξu, ξu0, ξu1).



Adaptive estimation

I Theorem
Under (H1′), (H2′), (H3) and (H4), for 0 < αmin < αmax , there
exists a choice of H and a specification of VN

h such that

1. The GL bandwidth hN? satisfies

E
[(
B̂N
hN?

(a)− B(a)
)2]
. inf

h∈H

(
Bh(νB) + VN

h

)
+ N−1.

2. Moreover, for every α ∈ [αmin, αmax]:

sup
B∈B∩Hα

E
[(
B̂N
hN?

(a)− B(a)
)2]
.
( logN

N

)2α/(2α+1)

where Hα is a (locally around a) Hölder ball.

I The result is minimax adaptive optimal.

I Remaining open question: extension to non uniformly
geometrically ergodic Markov kernels.



Supplementary material

I We numerically illustrate the performances of the previous
estimator

I The numerics is based on another approximation scheme, by
wavelet kernel projection estimators

I The algorithm differs, but the theory is the same.

I We further elaborate on arbitrary Binary Markov Chains
models.



Numerical illustration

I We consider a perturbation of the baseline splitting rate
B̃(x) = x/(5− x) over the range x ∈ S = (0, 5) of the form

B(x) = B̃(x) + cT
(
2j(x − 7

2 )
)

with (c, j) = (3, 1) or (c, j) = (9, 4), and where
T (x) = (1 + x)1{−1≤x<0} + (1− x)1{0≤x≤1} is a tent shaped
function.

I The trial splitting rate with parameter (c, j) = (9, 4) is more
localized around 7/2 and higher than the one associated with
parameter (c, j) = (3, 1).

I For a given B, we simulate M = 100 Monte Carlo trees up to
the generation n = 15 with τ = 2.



Numerical illustration

Figure: Sample autocorrelation of ordered (ξu0, |u| = n − 1) for n = 15.
Note: due to the binary tree structure the lags are {4, 6, 6, . . .}. As
expected, we observe a fast decorrelation.



Numerical illustration

I Here, we implement an alternative adaptive procedure via a
projection estimator

Kh ? B(x) 
∫

Kh(x , y)B(y)dy

with
Kh(x , y) =

∑
k

ϕh,k(x)ϕh,k(y),

where the ϕh,k(x) = h−1/2ϕ(h−1x − k) (on a dyadic scale
h−1 = 2j) generate a regular multiresolution analysis
associated to a scaling function ϕ.

I The adaptve bandwidth is replaced here by wavelet
thresholding, taking advantage of the multiresolution
structure.

I The underlying theory is close and the required probabilistic
properties of the models tools are the same!



Numerical illustration

I We implement the estimator B̂N using the Matlab wavelet
toolbox.

I We use compactly supported Daubechies wavelets of order 8
up to maximal level J := 1

2 log2(N/ logN).

I We choose the threshold proportional to
√

log |Tn|/|Tn|,
Tn = the whole tree up to generation n.

I We calibrate the constant to 10 or 15 for two trial splitting
rates (mainly by visual inspection).

I We evaluate B̂n on a regular grid over [1.5, 4.8] with mesh
∆x = N−1/2.



Numerical illustration

Figure: Large spike: reconstruction of the trial splitting rate B specified
by (c, j) = (3, 1) over [1.5, 4.8] based on one sample (ξu, u ∈ Tn) for
n = 15 (i.e. 1

2 |Tn| = 32 767).



Numerical illustration

Figure: High spike: reconstruction of the trial splitting rate B specified by
(c, j) = (9, 4) over D = [1.5, 4.8] based on one sample (ξu, u ∈ Tn) for
n = 15 (i.e. 1

2 |Tn| = 32 767).



Estimation in arbitrary BMC models

I We review some generic results for nonparametric estimation
in arbitrary BMC models.

I We slightly depart from the previous appproach, but the
methodology is essentially the same.

Definition
A bifurcating Markov chain is a family (Xu)u∈T of random
variables with value in (S,S) such that Xu is F|u|-measurable for
every u ∈ T and

E
[ ∏
u∈Gm

gu(Xu,Xu0,Xu1)
∣∣Fm

]
=
∏

u∈Gm

Pgu(Xu)

for every m ≥ 0 and (gu)u∈Gm , where
Pg(x) =

∫
S×S g(x , y , z)P(x , dy dz)



Estimation in arbitrary BMC models

I We consider a BMC (Xu, u ∈ T) that we observe on Tn, with

T =
⋃
m∈N

Gm, Gm = {0, 1}m, (G0 = ∅).

I We thus have a regular tree with % = 1 and N = 2n+1 − 1.
I Several objects of interest:

I The transition of the tagged-branch chain or mean transition.
I The transition of the BMC itself.
I The invariant (probability) measure of the mean transition.



The tagged-branch chain

I The tagged-branch chain (Ym)m≥0: Y0 = X∅ and for m ≥ 1,

Ym = X∅ε1···εm ,

(εm)m≥1 IID Bernoulli with parameter 1/2, independent of
(Xu)u∈T.

I Transition (mean transition)

Q = (P0 + P1) /2,

obtained from the marginals P0(x , dy) =
∫
z∈S P(x , dy dz)

and P1(x , dz) =
∫
y∈S P(x , dy dz).



Digest

I Guyon (2007) proves that if (Ym)m≥0 is ergodic with invariant
measure ν, then

1

|Gn|
∑
u∈Gn

g(Xu)→
∫
S
g(x)ν(dx)

holds almost-surely as n→∞.

I We also have

1

|Tn|
∑
u∈Tn

g(Xu,Xu0,Xu1)→
∫
S
Pg(x)ν(dx)

almost-surely as n→∞.

I These results are appended with central limit theorems.



Toward statistical inference

I D ⊆ S that will be later needed for statistical purposes.

I Mean transition Q = 1
2 (P0 + P1).



Assumptions

I Assumption (D) The family {Q(x , dy), x ∈ S} is dominated:

Q(x , dy) = Q(x , y)n(dy) for every x ∈ S,

for some Q : S2 → [0,∞) such that

|Q|D = sup
x∈S,y∈D

Q(x , y) <∞.

I Assumption (UE) Q admits a unique invariant probability
measure ν and there exist R > 0 and 0 < ρ < 1/2 such that∣∣Qmg(x)− ν(g)

∣∣ ≤ R|g |∞ ρm, x ∈ S, m ≥ 0,



Variance definitions

I For g : Sd → R, define Σ1,1(g) = |g |22 and for n ≥ 2,

Σ1,n(g) = |g |22 + min
1≤`≤n−1

(
|g |212` + |g |2∞2−`

)
. (1)

I Define also Σ2,1(g) = |Pg2|1 and for n ≥ 2,

Σ2,n(g) = |Pg2|1 + min
1≤`≤n−1

(
|Pg |212` + |Pg |2∞2−`

)
. (2)



One-step deviations

Theorem
Under (D) and (UE), for every n ≥ 1:
(i) For any δ > 0 such that δ ≥ 4R|g |∞|Gn|−1, we have

P
( 1

|Gn|
∑
u∈Gn

g(Xu)− ν(g) ≥ δ
)
≤ exp

( −|Gn|δ2

κ1Σ1,n(g) + κ2|g |∞δ

)
.

(ii) For any δ > 0 such that δ ≥ 4R(1− 2ρ)−1|g |∞|Tn|−1, we have

P
( 1

|Tn|
∑
u∈Tn

g(Xu)− ν(g) ≥ δ
)
≤ exp

( −|Tn|δ2

κ3Σ1,n(g) + κ4|g |∞δ

)
.



Two-steps deviations

Theorem
Under (D) and (UE), for every n ≥ 2:
(i) For any δ > 0 such that δ ≥ 4R|Pg |∞|Gn|−1, we have

P
( 1

|Gn|
∑
u∈Gn

g(Xu,Xu0,Xu1)−ν(Pg) ≥ δ
)
≤ exp

( −|Gn|δ2

κ1Σ2,n(g) + κ2|g |∞δ

)
.

(ii) For any δ > 0 such that δ ≥ 4(nR|Pg |∞ + |g |∞)|Tn−1|−1, we
have

P
( 1

|Tn−1|
∑

u∈Tn−1

g(Xu,Xu0,Xu1)− ν(Pg) ≥ δ
)

≤ exp
( −n−1|Tn−1|δ2

κ1Σ2,n−1(g) + κ2|g |∞δ

)
.



Statistical inference

I From now on (S,S) =
(
R,B(R)

)
and D ⊂ S compact

interval

I Assumption (S) The family {P(x , dy dz), x ∈ S} is
dominated w.r.t. the Lebesgue measure:

P(x , dy dz) = P(x , y , z)dy dz for every x ∈ S

for some P : S3 → [0,∞) such that

|P|D = sup
(x ,y ,z)∈D3

|P(x , y , z)| <∞.



Statistical inference (cont.)

I For some n ≥ 1, we observe (Xu)u∈Tn

I Under (D), (S), with n(dy) = dy , we have
I P(x , dy dz) = P(x , y , z)dy dz
I Q(x , dy) = Q(x , y)dy
I ν(dx) = ν(x)dx

I Goal: estimate nonparametrically x  ν(x), (x , y) Q(x , y)
and (x , y , z) P(x , y , z) for x , y , z ∈ D.



Nonparametric estimation of ν(x)

I For a σ-regular wavelet basis, we approximate the
representation

ν(x) =
∑
λ∈Λ

νλψ
1
λ(x), νλ = 〈ν, ψ1

λ〉

by

ν̂n(x) =
∑
|λ|≤J

ν̂λ,nψ
1
λ(x),

with

ν̂λ,n = Tλ,η
( 1

|Tn|
∑
u∈Tn

ψ1
λ(Xu)

)
.

I Tλ,η(x) = x1|x |≥η threshold operator (with Tλ,η(x) = x for
the low frequency part.

I ν̂n is specified by the maximal resolution level J and the
threshold η.



Theorem
Under (D) and (UE) with n(dx) = dx , specify ν̂n with

J = log2
|Tn|

log |Tn|
and η = c

√
log |Tn|/|Tn|

for some c > 0. For every π ∈ (0,∞], s ∈ (1/π, σ] and p ≥ 1, for
large enough n and c , the following estimate holds(

E
[
‖ν̂n − ν‖pLp(D)

])1/p
.
( log |Tn|
|Tn|

)α1(s,p,π)
,

with α1(s, p, π) = min
{

s
2s+1 ,

s+1/p−1/π
2s+1−2/π

}
, up to a constant that

depends on s, p, π, ‖ν‖Bsπ,∞(D), ρ, R and |Q|D and that is
continuous in its arguments.



I The estimator ν̂n is smooth-adaptive in the following sense:
for every s0 > 0, 0 < ρ0 < 1/2, R0 > 0 and Q0 > 0, define
the sets A(s0) = {(s, π), s ≥ s0, s0 ≥ 1/π} and

Q(ρ0,R0,Q0) = {Q such that ρ ≤ ρ0,R ≤ R0, |Q|D,≤ Q0},

where Q is taken among mean transitions for which (UE)
holds. Then, for every C > 0, there exists
c? = c?(D, p, s0, ρ0,R0,Q0,C ) such that ν̂n specified with c?

satisfies

sup
n

sup
(s,π)∈A(s0)

sup
ν,Q

( |Tn|
log |Tn|

)pα1(s,p,π)
E
[
‖ν̂n − ν‖pLp(D)

]
<∞

where the supremum is taken among (ν,Q) such that νQ = ν
with Q ∈ Q(ρ0,R0,Q0) and ‖ν‖Bsπ,∞(D) ≤ C .



Nonparametric estimation of the mean transition Q(x , y)

I First estimate
fQ(x , y) = ν(x)Q(x , y)

of the distribution of (Xu− ,Xu) (when L(X∅) = ν) by

f̂n(x , y) =
∑
|λ|≤J

f̂λ,nψ
2
λ(x , y),

with

f̂λ,n = Tλ,η
( 1

|T?n|
∑
u∈T?n

ψ2
λ(Xu− ,Xu)

)
,

(T?n = Tn \G0.)

I Estimate Q(x , y) via

Q̂n(x , y) =
f̂n(x , y)

max{ν̂n(x), $}
(3)

for some $ > 0.

I Thus Q̂n is specified by J, η and $.



Theorem
Under (D) and (UE) with n(dx) = dx , specify Q̂n with

J = 1
2 log2

|Tn|
log |Tn|

and η = c
√

(log |Tn|)2/|Tn|

for some c > 0 and $ > 0. For every π ∈ [1,∞], s ∈ (2/π, σ] and
p ≥ 1, for large enough n and c and small enough $, the following
estimate holds(

E
[
‖Q̂n −Q‖pLp(D2)

])1/p
.
((log |Tn|)2

|Tn|

)α2(s,p,π)
, (4)

with α2(s, p, π) = min
{

s
2s+2 ,

s/2+1/p−1/π
s+1−2/π

}
, provided

m(ν) = infx∈D ν(x) ≥ $ > 0 and up to a constant that depends
on s, p, π, ‖Q‖Bsπ,∞(D2), m(ν) and that is continuous in its
arguments.



I This rate is moreover (nearly) optimal: define
ε2 = sπ − (p − π). We have

inf
Q̂n

sup
Q

(
E
[
‖Q̂n−Q‖pLp(D2)

])1/p
&

 |Tn|−α2(s,p,π) if ε2 > 0( log |Tn|
|Tn|

)α2(s,p,π)
if ε2 ≤ 0,

where the infimum is taken among all estimators of Q based
on (Xu)u∈Tn and the supremum is taken among all Q such
that ‖Q‖Bsπ,∞(D2) ≤ C and m(ν) ≥ C ′ for some C ,C ′ > 0.

I The calibration of the threshold $ needed to define Q̂n

requires an a priori bound on m(ν).

I The (log |Tn|)2 comes from the slow term in the deviations
inequality and from the wavelet thresholding procedure.



Nonparametric estimation of the transition P(x , y , z)
I First estimate the density

fP(x , y , z) = ν(x)P(x , y , z)

of the distribution of (Xu,Xu0,Xu1) (when L(X∅) = ν) by

f̂n(x , y , z) =
∑
|λ|≤J

f̂λ,nψ
3
λ(x , y , z),

with

f̂λ,n = Tλ,η
( 1

|Tn−1|
∑

u∈Tn−1

ψ3
λ(Xu,Xu0,Xu1)

)
,

I Next estimate the density P by

P̂n(x , y , z) =
f̂n(x , y , z)

max{ν̂n(x), $}
(5)

for some threshold $ > 0.
I Thus the estimator P̂n is specified by J, η and $.



Theorem
Under (D), (UE), (S). Specify P̂n with

J = 1
3 log2

|Tn|
log |Tn|

and η = c
√

(log |Tn|)2/|Tn|

for some c > 0 and $ > 0. For every π ∈ [1,∞], s ∈ (3/π, σ] and
p ≥ 1, for large enough n and c and small enough $, the following
estimate holds(

E
[
‖P̂n − P‖pLp(D3)

])1/p
.
((log |Tn|)2

|Tn|

)α3(s,p,π)
, (6)

with α3(s, p, π) = min
{

s
2s+3 ,

s/3+1/p−1/π
2s/3+1−2/π

}
, provided

m(ν) ≥ $ > 0 and up to a constant that depends on
s, p, π, ‖P‖Bsπ,∞(D3) and m(ν) and that is continuous in its
arguments.



I This rate is moreover (nearly) optimal: define ε3 = sπ
3 −

p−π
2 .

We have

inf
P̂n

sup
P

(
E
[
‖P̂n−P‖pLp(D3)

])1/p
&

 |Tn|−α3(s,p,π) if ε3 > 0( log |Tn|
|Tn|

)α3(s,p,π)
if ε3 ≤ 0,

where the infimum is taken among all estimators of P based
on (Xu)u∈Tn and the supremum is taken among all P such
that ‖P‖Bsπ,∞(D3) ≤ C and m(ν) ≥ C ′ for some C ,C ′ > 0.
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