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Today's program

» About nonparametric adaptive estimation

e Lepski's principle: soft heuristics

e The Goldenshluger-Lepski method without (too much) pain
» Estimation in bifurcating models

e Age dependent model
e Size dependent model
e Estimation in arbitrary BMC models



Lepski's principle
Lepski's principle for two hypotheses
The Goldenshluger-Lepski method



Setting

» Goal: estimate a probability distribution g(t, a)dtda from a
(1ID) drawn

N
Z"(ds, du) = ZV(ds, du) = N™" " 67, a,)(ds, du).
i=1

» Kernel estimator:
-
gN(t,a) = / / Kn(t — 5,2 — u)Z"(ds, du).
0 JRy
» We have established, if g € HebB
~ 2
E[ (& (t,2) - £(t,2))°] < Balg) + V}

%(hi"—&-hf)z-&-( . >2
v/ Nh1hy




Lepski's principle for two hypotheses

» Simplification: g(t,a) = g(a) € H* with & € {Omin, ¥max},
Omin < Omax-

> Let hV(a) = (N(log N)~1)~1/(2a+1),

» Pivotal observable quantity:
|8 () (3) = B (0 ()| = [ (K () — Kt () * 2 (3) -

» To be compared with N~%min/(20min+1),

» Presence of an extra logarithmic factor for the control of
stochastic deviations ~» ignored in a first approach.



Lepski's principle heuristics
» Not a valid proof!

> If & = amin, with overwhelming probability (ignoring log
terms)

Ki(ay) * 2 (a) — g(a) ~ N—0min/(amint1)
and

Kh () * ZN(a) — g(a) = AN (amax) ™ + N_1/2h’\’(a,m,x)_l/2
— Nfamin/(Zamax“Fl) + N*amax/(2amax+l)

~ N_amin/(2ama><+1)

>> N_Oémin/(204min+1) .

» Summing-up, if & = amin

| Kt (i) * zM(a) — Khi (cumax) * ZN(a)[s> N7omin/ (20mintL),

Qmax




Lepski's principle heuristics
» Conversely, if & = amax, With overwhelming probability
(ignoring log terms)

Ki () * 27 (3) — g() = B (ctmin) ™ 4+ N2V (i) =1/
== N_amax/(2()tmin+]_) + N—amin/(2amin+1)

~y N~ Cmin/(20tmin+1)

and

QOmax

KhN( )*ZN(a)_g(a) ~ N*Olmax/(zamax*Fl) << Nfamin/(2oémin+1).

> Summing-up, if & = max

’KhN(amin) * ZN(a) - KhN( ) * ZN(3)|% N_amin/(2amin+1)'

Qmax




Lepski's principle: recap

> &(a) = Knx ZV(a).

—1/(2amin+1 —1/2(amax+1
>H:{(IOQIN) / +)’($) /A +}-

» Data driven bandwidth: h"Y = hV(ZN) solution to

hiv — max{h S /H,VU < h, Ely(a) —?g\é\l(a)’ < C(%>l/z}

» Final estimator: Ef’,\,’\,(a) satisfies the estimate

N _amax/2(amax+1)
og
N

if g e Hom
)*amin/2(amin+1) if gc H{ Cmin

:\
2
SN—

~ 2
E[(gn(a)—£(a)7] < { (
» Smoothness adaptation over the scale H* for

a € {Oémimamax}-

» The risk bound inflation by a log N term is unavoidable.

2

og



The Goldenshluger-Lepski method

» Modern formulation of Lepski's principle in terms of oracle
inequalities.
» Again, we keep-up with the 1-dimensional case for simplicity.

> We look for h* = F*(ZN) so that

E[(g%(2) ~ £(2))°] < jnf (Ba(e)® + V).



The GL method

v

Auxiliary oversmoothed estimator

Zhy(a 1ZKh*K A)), h.meH.

v

8hn(a) = &gy.n(a).

8hn(a) = 8hin(a) for K(x) = (2m)~1/2 exp(—3 1x2).

GL principle: for fixed h € H, we let n run through ‘H and
compare g to ghp

v

v



The GL method: the fundamental quantities

» Construction of the GL estimator

Bi(n) = {[&(a) — Enn(a)] — x()},
h= Argmin,ey, (Br + x(h)), Bp= %né}[( Bn(n),

GL-estimator : g;(a).
» Handwaving heuristics:

e x(n) — oo as n — 0 appropriate random fluctuation control
threshold.

e B,(n) is computable and hopefully close to its expectation in
a certain sense

e Picking h amounts to take something like

hamax{heH, ¥n<h:|g,(a) - &nn(a)| S (Var(g,)*}.



Soft proof of the GL method

> Step 1: for every h € H:

185(2) — g(a)| < 2(Br+ x(h)) +[&n(a) — g(a)|] (%)

» Step 2: Fundamental control of E[|%h|2]:
By = max Bj(n) =max {[2,() — &nil XM},
<max {6 = xa(n)}y +max{Chy —xa()},
+ nmea,;[(‘E[gI](a ] gh 1/ ”

o X =x1+X2 ((hyy = E(h),n(a) - E[E(h),n(a)]-
e Last term:

maxyen | Ky * & — Ky * Kn* gloo S |K1lg — Ki* gloo-
e First two stochastic terms: concentration inequalities.



Soft proof of the GL method

» Concentration inequality

Proposition (Benett, Bernstein)

—b < Y; < b independent r.v. such that SN | E[Z?] < v. With
Au) =V2vu + %bu, we have

N
P() " Z —E[Z] > Mu)) < exp(—u).
i=1

» Applied to Y; = N71K,(x — A;) or Ky x K,(x — A;) yields
appropriate An (resp.h)(u) = >‘N,77 (resp. h),K,lgloo(u)'
» Set finally x;(n) = A(y|logn|), i = 1,2, v > 0 to be specified.

> The first two stochastic terms are of order N™*3° 77",



Soft proof of the GL method

» We piece all the estimates together, take E[(-)?] and miny:

E[(g;(a) — g(a))’]

< min |E[(gx(a) - (2)%] + 155+

+|Knxg — g!io] + N7y
neH

» Choose H sufficiently rich to approximate
hn(a) = N~/ @+ while N2 30, 0 77~ < minimax rate.

» It remains to prove (x)...



Soft proof of the GL method

» Completely deterministic argument:
85(2) — &(a)| < {1&;(a) — &5 — x(h)} +x(h)
+ {|§Rh - /g\h(a)’ - X(h)}+ =+ X(h)
+ [gn(a) — g(a)l-

v

First term in the RHS: B4(h) + x(h) < max,c Br(n) + x(h)
Second term in the RHS similar: < max, ez B4(n) + x(h).
Adding and regrouping, we obtain

v

v

B+ x(h) + By + x(h) < 2(B + x(h))

by construction of h.
|§ﬂ(a) —g(a)| < 2(By + x(h)) + |gn(a) — g(a)} (%) follows.

v



Estimation in bifurcating models
Age dependent model
Size dependent model
Estimation in arbitrary BMC models



Estimation in bifurcating models

» We turn back to our PDE related stochastic models.

» We start with growth-fragmentation models for the simplest
observation scheme: we observe

2ZN = {(¢u, &), u € UE},

where

e (Cu, &) = (life length, size at birth) of the individual u.
e U2 is a p-regular tree of size N ~ 2"¢.

» The underlying stochastic tools are Markov chains on trees.

» For age-dependent division, the statistical model has a
particularily simple structure.



Growth-fragmentation: the age dependent model
» The associated deterministic model is
0:g(t,a) + 0.g(t, a) + B(a)g(t,a) =0

g(0,2) = go(a), g(t,0) =2 [ B(a)g(t, a)da.
» We are interested in recovering a — B(a) from data
ZN = {(Cuv‘su)7 uc Ug}

» The data (§,),cpe are irrelevant here and we discard them.

» The data (Cy),cpe are independent and identically distributed
with common density

P(Cy € da) = B(a)exp (— /Oa B(u)du)da



Growth-fragmentation: the age dependent model

» The formula can be inverted: if fg(a)da = P((, € da), we also
have

fB(a)

Bla) = 1— [3 fa(u)du

provided foo B = o0, an assumption in force from now on.
» Let N = |Uj| ~ 2. Let

N1 ZueUﬁ Kn(a — Cu)

BN(a) =
n(a) max(N=1 37 cpe Li¢,>a), @n)

for some (technical) threshold wy — 0.

> Numerator eligible to data-driven bandwidth selection
according to Lepski's principle h ~~ hN.

» Denominator converges to 1 — [; fg(u)du at rate N—1/2
strongly.



Growth-fragmentation: the age dependent model

» (H1) B consists of (uniformly) bounded functions such that
[ B = oc.

Theorem
Under (H1), for 0 < aumin < max, there exists a choice of H such
that

1. The GL bandwidth hY satisfies

E[(B(a) - B(2)"] £ jnf (Ba(fa) +VP) + N7 |

2. Moreover, for every & € [Qmin, Cmax]-

/\N 2 |ogN 2&/(2a+1)
e E[(Bl(a) - B()] 5 (F57)

where H® is a (locally around a) Hélder ball.

» The result is minimax adaptive optimal.



Growth-fragmentation: the size dependent model

» We start with a singe cell of size xg.

» For simplicity, the cell grows exponentially according to a
constant rate 7 > 0:
dX(t
dg) = r(X(t))dt = 7X(t)dt.
» The mother cell gives rize to two children, at a size dependent
rate x — B(x).

» The two children have initial size x; /2, where x; is the size of
the mother at division.

» They grow independently according to the rate 7 and divide
according to the rate B(x).



Growth-fragmentation: the size dependent model

> We observe
zZN = {(Cu:fu)’ uc Ug},
where
e (Cu, &) = (life length, size at birth) of the individual w.
o U¢is a p-regular tree of size N ~ 2",
» We look for an analog of the inversion formula
P(¢y € da) <» B(a) obtained in the age-dependent model.
» The £, and the (,, are not independent — not identically
distributed — anymore!

» They however form a Markov chain along branches of the
genealogical tree — bifurcating Markov chain.



Growth-fragmentation: the size dependent model

» If u~ denotes the parent of u, we have

28, =&, exp (TCU*)'

» 7 is identified via the observation of a single (¢,-,&,—,&u)-
» We have

P((y € [t t+dt]|Cu > t, &y = x) = B(xe™")dt

that entails the density of the lifetime (,- conditional on
&i- =x

t — B(xe™)exp ( - /Ot B(xeTS)ds>.




Growth-fragmentation: the size dependent model

» We can derive a simple and explicit representation for the
transition kernel Kg(x, dx’) of the underlying Markov chain:
Ke(x,x")dx' =P (& € dX/| Em = X)
_ B(2 X
= ( X )1{X1>X/2} exp ( // B‘(r2ss) dS) dx’.
x/2

» The inversion formula is obtained by looking at the equation

/ ve(dx)Kg(x, x")dx" = vg(dx’)
xeR4

that charaterises the invariant probability measures
vg(dx) = vg(x)dx of Kg.



Growth-fragmentation: the size dependent model

» Expand the invariant measure equation vgKg = vpg

ve(x') = /000 ve(x)Kg(x, x")dx

!

/ 2x’ X
= B(2>/<)/ ve(x) exp(—/ @ds)dx
0

TX /2
B(2x") [ [
B 7'X//0 /0 1{x <2x',s> X’}VB(X) Kg(x, s)dsdx.

» This yields the key representation

vo() = P2p, (e, <20 62 %)

with P, = [ va(dx)P( - |& = x).



Growth-fragmentation: the size dependent model

» We obtain the representation formula

TX ve(x/2)
2 Py, (6, <x, &4 >x/2)

» But! We always have {{,- > x} C {&, > x/2}, hence

B(x) =

Py, (fuf <x,& > x/2) =P, (fu > x/2) =P (&,- > x)
/.-
= /X ve(u)du.
JIx/2

» Remark: the general inversion formula still allows for some
room (if 7 = 7, is tree-dependent and random for instance)



Growth-fragmentation: the size dependent model

» In turn, we obtain the final representation

Tx vg(x/2)

Blx) = 2 [, ve(u)du

> This yields the kernel-based estimator

_ N Scug K€ = x/2)

2 max(N-1 D ueut 1{§u7 <x,&y > X/2}’wN)

for some (technical) threshold wy — 0.

» The study of the convergence of empirical means is more
involved.



Convergence of empirical means

» Notation: KZ¢(x) = Kg(KF ) (x) with

Kep(x) = [ ol )Kalx X)ax = E[o(6) ¢ = ]

» (H2) infgeginfy B(x) > 0.

Proposition

Under (H1),(H2), the invariant probability vg is well defined and
there exists pg < 1 such that for V(x) = 1 + x2, we have

sup |Kg'w(x) = (p,vB)| < pE V(x).
lp|<V




Convergence of empirical means

> Result uniform in B € B and 7 over compact sets of (0, c0).

» Proof: classical, relies on the existence of a Lyapunov function
V(x) > 1s.t.

KgV(x) < AV(x)+ C and | i‘n<fc K(x, dx") > \u(dx")

for some 0 < A < 1, C > 0 and a probability measure p.

» Enables one to control covariance terms:

E[p(€)p(6)] = E[KET M o(Xun )K" o (Xunn)]

u A v = most recent common ancestor between v and v.



Convergence of empirical means

» Two difficulties:

1. Order of the covariance terms in terms of ¢ ~~ usually needs a
control in | - |-norm.

2. Competition between growth of the binary tree (geometric rate
= 2) and decorrelation (geometric rate = pg).

» Answer 1: Assume for simplicity that E[¢(&,)] = E[¢(£4)] and
|u| < |v|. The last term is bounded above by

E[p(&)e(€)] < min (oL, ol 1M o] el o)1),

d(u, v) = graph distance between u and v.

» Answer 2: Sufficient condition: pg < %



Convergence of empirical means

> (H3) We have supgcp pg < 3.
> Let Myz(p) = N71 35 e ¢(&u)-
Proposition
Under (H1), (H2),(H3), for any initial condition p, we have

2 -
E.[(Mug(e) = (,v8)°] SN 1(‘90’%2(;1%3) +(1+ Wﬁqm)‘ﬂoo’@‘zfs

uniformly in B.
» This results holds in wider generality for bifurcating Markov
chains:
e Arbitrary deterministic flows between jumps.
e Random flows (diffusions) between jumps.
e Test functions on forks: ©(&,) ~ ¥ (&u, Euos Eun)-



Nonparametric estimation of B(x)

» With the specification hN = N~1/(22+1)  the variance bound
is sufficient to obtain

sup B, [(BM(x) — B(x))?] S wy2N—20/(/et1)
BeBNH>

for any u(dx’) < dx’ locally around x.
» The rate is minimax nearly-optimal but non-adaptive!

» In order to extend the result to adaptation, we need
concentration properties.

» We need a stringent restriction: uniform geometric ergodicity.



Uniform geometric ergodicity

v

The kernel K is uniformly geometrically ergodic if

|KEo(x) — (p,v8)| < |elocrB-

v

This amounts to have a bounded Lyapunov function V.

v

We have a sufficient (but slightly artificial) condition that
implies uniform geometric ergodicity and (H3):
(H2") B : (bmin, bmax) — Ry with 2bmin < bmax and

v

bmaX
/ utB(u)du = o, / utB(u)du < 1.
b

min

v

(H1'") B contains continuous and locally bounded functions
with appropriate uniformity conditions.



Concentration properties

> Let 4(0) = [0f3 + mint<i<n (l0l22° + [0]327°)

Theorem
Work under (H1"), (H2'), (H3) and (H4). For § 2 N7t|p|, we
have
P(MU”(‘P) — (p,vB) > 5) < exp ( - CBN—52)
: Za() + [¢loc

with SUpgen CB < 00.
» The result extends to

e More general BMC models (under uniform geometric
ergodicity).
e Test functions on forks: ©(&,) ~ ¥ (&u, Euos Eun)-



Adaptive estimation

» Theorem
Under (H1"), (H2"), (H3) and (H4), for 0 < amin < Q'max, there
exists a choice of H and a specification of V,’Y such that
1. The GL bandwidth hY satisfies

E[(B(a) - B(2))] S jnf (Ba(vs) +V}) + N

2. Moreover, for every o € [min, max]-

( log N)Za/(2a+1)

sup E[(E,%/(a) — B(a))ﬁ < N

BeBNH~

where H* is a (locally around a) Hélder ball.

> The result is minimax adaptive optimal.

» Remaining open question: extension to non uniformly
geometrically ergodic Markov kernels.



Supplementary material

» We numerically illustrate the performances of the previous
estimator

» The numerics is based on another approximation scheme, by
wavelet kernel projection estimators

» The algorithm differs, but the theory is the same.

» We further elaborate on arbitrary Binary Markov Chains
models.



Numerical illustration

» We consider a perturbation of the baseline splitting rate
B(x) = x/(5 — x) over the range x € S = (0, 5) of the form

B(x) = B(x) + ¢ T(2(x - 1))

with (¢, /) = (3,1) or (¢,j) = (9,4), and where
T(x) = (1 +x)_1<x<0} + (L — x)1jo<x<1} is a tent shaped
function.

» The trial splitting rate with parameter (c,j) = (9, 4) is more
localized around 7/2 and higher than the one associated with
parameter (c,j) = (3,1).

» For a given B, we simulate M = 100 Monte Carlo trees up to
the generation n = 15 with 7 = 2.



Numerical illustration

0.8

0.6-

0.4+

0.2

Sample Autocorrelation

-0.2¢ i

Figure: Sample autocorrelation of ordered ({0, |u| = n — 1) for n = 15.
Note: due to the binary tree structure the lags are {4,6,6,...}. As
expected, we observe a fast decorrelation.



Numerical illustration

» Here, we implement an alternative adaptive procedure via a
projection estimator

Kh*B(X)W/Kh(XJ/)B(y)dy

with

Kn(x,y) =D eni(x)en(y),
k

where the ¢p x(x) = h™1/2p(h~x — k) (on a dyadic scale
h=1 = 2J/) generate a regular multiresolution analysis
associated to a scaling function ¢.

» The adaptve bandwidth is replaced here by wavelet
thresholding, taking advantage of the multiresolution
structure.

» The underlying theory is close and the required probabilistic
properties of the models tools are the same!



Numerical illustration

> We implement the estimator I§N using the Matlab wavelet
toolbox.

» We use compactly supported Daubechies wavelets of order 8
up to maximal level J := 1 log,(N/ log N).

» We choose the threshold proportional to \/log|T,|/| Tl
T, = the whole tree up to generation n.

» We calibrate the constant to 10 or 15 for two trial splitting
rates (mainly by visual inspection).

> We evaluate B, on a regular grid over [1.5,4.8] with mesh
Ax = N71/2,



Numerical illustration

25

T T

True splitting rate i
~--- Oracle estimator {
— Thresholding estimator

20 /

Splitting rate

Size x

Figure: Large spike: reconstruction of the trial splitting rate B specified
by (c,j) = (3,1) over [1.5,4.8] based on one sample (§,,u € T,) for
n=15 (ie. 1|T,| =32767).



Numerical illustration

35

T T
True splitting rate

---- Oracle-like estimator

30 — Thresholding estimator

25

N
53
T

Splitting rate
o

Size x

Figure: High spike: reconstruction of the trial splitting rate B specified by
(¢,4) = (9,4) over D = [1.5,4.8] based on one sample (§,,u € T,) for
n=15 (ie. 1|T,| =32767).



Estimation in arbitrary BMC models

» We review some generic results for nonparametric estimation
in arbitrary BMC models.
» We slightly depart from the previous appproach, but the
methodology is essentially the same.
Definition
A bifurcating Markov chain is a family (X, ),er of random
variables with value in (S, &) such that X, is F|u-measurable for
every u € T and

E[ TT gu(Xu: Xu0, Xu1)|Fan] = ] Peu(Xu)

ueGnm ueGm

for every m > 0 and (gu)uea,,, Where
Pg(x) = Jsxs &(x.y,2)P(x, dy dz)



Estimation in arbitrary BMC models

» We consider a BMC (X, u € T) that we observe on T, with

T= ] Gm Gm={0,1}", (Go=0).

meN

» We thus have a regular tree with o =1 and N = 2"t — 1.
» Several objects of interest:

» The transition of the tagged-branch chain or mean transition.
» The transition of the BMC itself.
» The invariant (probability) measure of the mean transition.



The tagged-branch chain

» The tagged-branch chain (Ymm)m>0: Yo = Xp and for m > 1,
Ym = X@elmema

(ém)m>1 1ID Bernoulli with parameter 1/2, independent of
(Xu)ueT-
» Transition (mean transition)

Q= (Po+P1)/2,

obtained from the marginals Po(x, dy) = |,

and Pi(x, dz) = [, s Plx, dy d). :

cs P(x, dy dz)



Digest

» Guyon (2007) proves that if (Yn)m>o is ergodic with invariant
measure v, then

SPLORY RIS

holds almost-surely as n — oo.

» We also have
1
T > g(Xu, Xuo, Xu1) — /SPg(x)u(dx)
n UETn

almost-surely as n — oo.

» These results are appended with central limit theorems.



Toward statistical inference

> D C S that will be later needed for statistical purposes.
> Mean transition Q = (P + P1).



Assumptions

» Assumption (D) The family {Q(x, dy),x € S} is dominated:
Q(x,dy) = Q(x,y)n(dy) for every x € S,
for some Q : 8% — [0, 00) such that

Qp= sup Q(x,y) < oc.
xe8S,yeD

» Assumption (UE) Q admits a unique invariant probability
measure v and there exist R > 0 and 0 < p < 1/2 such that

|9"g(x) —v(g)| < Rlgles ™, x€S8, m=>0,



Variance definitions

» For g : S9 — R, define ¥11(g) = |g|3 and for n > 2,

o 2 . 2n0 2 AL
Tin(e) = lgl2+ _min (g2 +[glx2™). (1)

» Define also ¥51(g) = |Pg?|1 and for n > 2,

T20(g) = [Pg” i 22t 2278, (2
20(8) = P&’y + _min (|Pgli2" +[Pgli2).  (2)



One-step deviations

Theorem
Under (D) and (UE), for every n > 1:
(i) For any § > 0 such that § > 4R|g|oo|Gn| ™1, we have

_|Gn’52 )
k1X1,n(8) + k2|80’

Py 2 &%) —vle) 2 8) < exp

ueGy,

(i) For any § > 0 such that § > 4R(1 —2p)7}|g|oo|Th| ™, we have

P X e00) - vle) 2 5) < o AT,

ueT, K3X1,n(g) + Kalglood




Two-steps deviations

Theorem
Under (D) and (UE), for every n > 2:
(i) For any § > 0 such that § > 4R|Pg|e|Gn| L, we have

—|Gn|52 \
Klz2,n(g) + K2|g|oo(s’

1
P<|Gn| u%(;n g(Xu, Xuo, Xu1)—v(Pg) > 6) < exp (

(i) For any 6 > 0 such that § > 4(nR|Pgloo + |g|oc)|Th 1|71, we
have

1
IED(|7Tr171| ue%:_lg(xu,Xuo,xul) ~v(Pg) = 6)

—n—1|'IF,,,1|52 )

<ex (
P20 1(8) + f2lglod




Statistical inference

» From now on (S,8) = (R,B(R)) and D C S compact
interval

» Assumption (S) The family {P(x,dy dz),x € S} is
dominated w.r.t. the Lebesgue measure:

P(x,dy dz) = P(x,y,z)dy dz for every x € S
for some P : S3 — [0, 00) such that

|Plp=sup [|P(x,y,2z)| < oc.
(x,y,z)eD3



Statistical inference (cont.)

» For some n > 1, we observe (X,)ueT,
» Under (D), (S), with n(dy) = dy, we have
» P(x,dydz) =P(x,y,z)dy dz
> Q(x, dy) = Q(x,y)dy
» v(dx) = v(x)dx
» Goal: estimate nonparametrically x ~ v(x), (x,y) ~ Q(x, y)
and (x,y,z) ~ P(x,y,z) for x,y,z € D.



Nonparametric estimation of v(x)

» For a o-regular wavelet basis, we approximate the
representation

V(X) = Zykwi(x)v U\ = <V7 1/}}\>

AEA

Un(x) = Z Ut (),
IA<J

with

ﬁ)x,n = 7&,17 <|T1n| Lg’]; ¢}\(Xu))

> Txn(x) = x1 4>, threshold operator (with T ,,(x) = x for
the low frequency part.

» U, is specified by the maximal resolution level J and the
threshold 7.



Theorem
Under (D) and (UE) with n(dx) = dx, specify v, with

[T
J = log, |og|"],Tn| and 1 = cy/log |Tp|/|Ts|

for some ¢ > 0. For every m € (0,00], s € (1/m,0] and p > 1, for
large enough n and c, the following estimate holds

(E[H/V\n — VHIZP(D)Dl/P < (Io‘g"]I!;]I‘in\)al(s,/mr)7

with a1(s, p,7) = min {25‘11, %} up to a constant that

depends on s, p, . |V]gs _(p), P,
continuous in its arguments




» The estimator U, is smooth-adaptive in the following sense:
for every sp >0, 0 < pg < 1/2, Ry > 0 and Qg > 0, define
the sets A(so) = {(s,7),s > sp,50 > 1/7} and

Q(po, Ro, Qo) = {Q such that p < pg, R < Ry, |Q|p, < Qo}s

where Q is taken among mean transitions for which (UE)
holds. Then, for every C > 0, there exists

c* = c*(D, p, 0, po, Ro, Qo, C) such that v, specified with ¢*
satisfies

|Tn| pai(s,p,m) R ,
sup  sup sup( ) E[||D, — v|| <
n (sm)eA(s) o og Tl 170 = ¥1iEp(p)

where the supremum is taken among (v, Q) such that vQ = v
with @ € 9Q(po, Ro, Qo) and HV”B%,OO(D) <C.



Nonparametric estimation of the mean transition Q(x, y)

> First estimate
fo(x,y) = v(x)Q(x,y)
of the distribution of (X,-, X,,) (when L(X;) = v) by

~

f(Gy) =Y Aatd(xy),
IN<J
with 1
Ao =T (7 2 Y0220,
M ueTs
(T, =T\ Go.)
» Estimate Q(x, y) via

~

Orfory) = i) @

for some w > 0.
» Thus @,, is specified by J, n and w.



Theorem R
Under (D) and (UE) with n(dx) = dx, specify Q, with

|Th|
og |T,|

J =3 logz ; and 1 = cy/(log |Ta[)?/|T5|

for some ¢ > 0 and w > 0. For every w € [1,00], s € (2/m, 0] and
p > 1, for large enough n and ¢ and small enough w, the following
estimate holds

~ 1/p log | T, 2 aa(s,p,m)
(B118 - Qlen)) " 5 (PEL )™

. . 2+1/p-1 .
with a(s, p, ) = min {2512, S/silg/ﬂ/ﬁ}, provided
m(v) = infyep v(x) > w > 0 and up to a constant that depends
ons,p,,|Qllss __(p2), m(v) and that is continuous in its

arguments.



» This rate is moreover (nearly) optimal: define
gp =sm— (p—m). We have

10 o [ et o
inf sup EU|Q,,—QH’ZP(D2)] > log | Tp|\ @2(s:pm)

o~ ~Y <
On Q ( T, ) if e5<0

where the infimum is taken among all estimators of Q based
on (Xy)uet, and the supremum is taken among all Q such
that [|Q||s _(p2y < C and m(v) > C' for some C, C’ > 0.

» The calibration of the threshold w needed to define Qn
requires an a priori bound on m(v).

» The (log|T,|)?> comes from the slow term in the deviations
inequality and from the wavelet thresholding procedure.



Nonparametric estimation of the transition P(x, y, z)
» First estimate the density
f’p(X,)/,Z) = V(X)P(vavz)
of the distribution of (Xy, Xu0, Xu1) (when L(Xp) =) by

E(X’)@Z) = Z f/\,nq/)?\(X,)/yZ)a

[Al<J

with
f)\7n = 7;\,7]<|Tn 1| Z ¢)\ Xu,XuOyXul))

» Next estimate the density P by

S _ ;—I\”l(xvya Z)
Pn(Xayvz) - max{ﬁn(x),w}
for some threshold = > 0.

» Thus the estimator 73,, is specified by J, n and w.



Theorem R
Under (D), (UE), (S). Specify P, with

T
log |T,|

J= %Iogz and 1 = c4/(log|Tn|)2/|T,|

for some ¢ > 0 and w > 0. For every m € [1,00], s € (3/m, 0] and
p > 1, for large enough n and ¢ and small enough w, the following
estimate holds

~ 1/p log [T ,|)2\ @3(s:p.m)
(B11P: - Pllo)) 5 ()7 o)

- - 3+1/p—1 :
with as3(s, p, ) = min {2513, 52/5/3+/1p72/;r}, provided
m(v) > w > 0 and up to a constant that depends on
s,p,, | Pllgs _(p3) and m(v) and that is continuous in its

arguments.



» This rate is moreover (nearly) optimal: define e3 = 5 — 257
We have
R 1 |T,|~e3(s:p.m) if &3>0
i —P|IP > P,
o (BIPPlps)) 2 <|Og’ﬂlﬂ;n>a3(spw) if e3<0.
n

where the infimum is taken among all estimators of P based
on (Xy)uet, and the supremum is taken among all P such
that [|P||ss _(ps) < C and m(v) = C’ for some C, C’ > 0.
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