Statistical inference for structured models

Part IV: Estimation with bias sampling and proxy experiments.
Large population models. Further models

Marc Hoffmann, Université Paris-Dauphine PSL
Spring school SFB 1294, March 2019

Informal structure of the study

- Statistical setting: We have (i) data Z^{N} and (ii) a parameter of interest f. Asymptotics are taken as $N \rightarrow \infty$.
- Structure of the problem:

$$
\begin{gathered}
\mathcal{H}_{N}\left(Z^{N}\right)=0 \text { for some SDE } \mathcal{H}_{N} \\
Z^{N} \rightarrow \xi \text { limiting object } \\
\mathcal{H}(\xi, f)=0 \text { for some PDE } \mathcal{H}
\end{gathered}
$$

- Objective: recover f from the observation of Z^{N} (or a proxy \mathcal{Z}^{N} of Z^{N}).

Today's program

- Bias sampling for growth-fragmentation models
- Age model: many-to-one formulas.
- Size models steady-state approximation.
- Human population models and nonlinear extensions
- Nonlinear models and open questions
- Models of interacting neurons
- More nonlinear models in a mean-field limit

Bias sampling

Age dependent model
Size model: estimation at a large fixed time in a proxy model

Large population models

Nonlinear extensions, open questions
 Models of interacting neurons
 More non-linear models in a mean-field limit

Age dependent division rate $B(a)$

- The associated deterministic model is

$$
\left\{\begin{array}{l}
\partial_{t} g(t, a)+\partial_{a} g(t, a)+B(a) g(t, a)=0 \\
g(0, a)=g_{0}(a), g(t, 0)=2 \int_{0}^{\infty} B(a) g(t, a) d a
\end{array}\right.
$$

- We are interested in recovering $a \mapsto B(a)$ from data

$$
\left(Z_{t}\right)_{0 \leq t \leq T} \text { or } Z_{T}
$$

- $Z_{t}=\sum_{i=1}^{N_{t}} \delta_{A_{i}(t)}$ with $g(t, \cdot)=\mathbb{E}\left[Z_{t}^{N}\right]$.
- Heuristically $Z_{T} \approx g(T, \cdot)$ when T is large.
- $N=\mathbb{E}\left[\left\langle Z_{T}, \mathbf{1}\right\rangle\right] \rightarrow \infty$ as $T \rightarrow \infty$.

Observation scheme

- We observe $\left(Z_{t}\right)_{0 \leq t \leq T}$ or Z_{T}.
- Tree representation:

$$
\begin{aligned}
\mathcal{T}_{T} & =\left\{u \in \mathbb{T}, b_{u} \leq T\right\}=\stackrel{\circ}{\mathcal{T}}_{T} \cup \partial \mathcal{T}_{T} \\
\stackrel{\circ}{T}_{T} & =\left\{u \in \mathbb{T}, d_{u} \leq T\right\} \\
\partial \mathcal{T}_{T} & =\left\{u \in \mathbb{T}, b_{u} \leq T<d_{u}\right\}
\end{aligned}
$$

- We have the correspondence

$$
\left\{\begin{array}{l}
\left(Z_{t}\right)_{0 \leq t \leq T} \leftrightarrow\left\{\zeta_{u}^{T}=\min \left(d_{u}, T\right)-b_{u}, u \in \mathcal{T}_{T}\right\} \\
Z_{T} \leftrightarrow\left\{\zeta_{u}^{T}, u \in \partial \mathcal{T}_{T}\right\}
\end{array}\right.
$$

- Additional difficulty: bias selection.
- Recovering strategy: many-to-one formulae.

Observation schemes $\stackrel{\circ}{\mathcal{T}}_{T} \cup \partial \mathcal{T}_{T}$

Figure: A sample path of $Z_{t}(d a)_{0 \leq t \leq T}$ with $B(a)=a^{2}$ and $T=7$.

Estimation of $B(a)$ from \mathcal{T}_{T}

- Many-to-one formula: For nice test functions φ :

$$
\mathbb{E}\left[\sum_{u \in \dot{\mathcal{T}}_{T}} \varphi\left(\zeta_{u}\right)\right]=\int_{0}^{T} e^{\lambda_{B} s} \mathbb{E}\left[\varphi(\chi(s)) H_{B}(\chi(s))\right] d s
$$

- $\chi(t)$: a tagged branch picked at random on the tree.
- We have $\mathbb{E}\left[\left|\stackrel{\circ}{T}_{T}\right|\right] \sim \kappa_{B} e^{\lambda_{B} T}$ and thus

$$
N=N_{B} \approx e^{\lambda_{B} T} \text { depends on } B \text { itself! }
$$

- λ_{B} : Malthus parameter, related to χ and H_{B}.
- $H_{B}(a)$ explicit: $f_{H_{B}}(a)=2 e^{-\lambda_{B} a} f_{B}(a)$.
- We have all the ingredients needed for a law of large numbers.

Estimation of $B(a)$ from \mathcal{T}_{T}

- $f_{B}(a)=B(a) \exp \left(-\int_{0}^{\infty} B(s) d s\right)$.
- Law of large numbers

$$
\frac{1}{|\stackrel{\mathcal{T}}{T}|} \sum_{u \in \mathcal{T}_{T}} \varphi\left(\zeta_{u}\right) \xrightarrow{\mathbb{P}} \int_{0}^{\infty} \varphi(a) 2 e^{\lambda_{B} a} f_{B}(a) d a
$$

- Rate of convergence: $\left(e^{\lambda_{B} T}\right)^{1 / 2}=N^{1 / 2}$ in probability.
- Rate heavily parameter dependent.
- Proof: establish rates of convergence in the many-to-one formula for test functions on forks $\varphi\left(\zeta_{u}, \zeta_{v}\right)$ for $u, v \in \stackrel{\circ}{\mathcal{T}}_{T}+$ geometric ergodicity.
- We meet the same difficulties as for BMC models.

Estimation of $B(a)$ from \mathcal{T}_{T}

- We can find a fast converging preliminary estimator $\hat{\lambda}_{T}$ of λ_{B}.
- Set

$$
\widehat{B}_{h}^{T}(a)=\frac{\left|\stackrel{\circ}{\mathcal{T}}_{T}\right|^{-1} \sum_{u \in \dot{\mathcal{T}}_{T}} \frac{1}{2} e^{\widehat{\lambda}_{T} \zeta_{u}} K_{h}\left(a-\zeta_{u}\right)}{1-\left|\stackrel{\circ}{\mathcal{T}}_{T}\right|^{-1} \sum_{u \in \dot{\mathcal{T}}_{T}} \frac{1}{2} e^{\hat{\lambda}_{T} \zeta_{u}} \mathbf{1}_{\left\{\zeta_{u} \leq a\right\}}}
$$

- For $h=\hat{h}^{T}(\alpha)=(\exp (\hat{\lambda} T))^{-1 /(2 \alpha+1)}$, we have the weak boundedness of

$$
N^{\alpha /(2 \alpha+1)}\left(\widehat{B}_{\hat{h}^{\top}(\alpha)}^{T}(a)-B(a)\right)
$$

uniformly over $\mathcal{B} \cap \mathcal{H}^{\alpha}$ for appropriate \mathcal{B}.

- The rate is nearly minimax.
- Open problem: we do not have adaptation, for lack of concentration inequalities.

What if data are taken from $\partial \mathcal{T}_{T}$ solely?

- By another many-to-one formula, we have for good test functions φ

$$
\begin{aligned}
\left|\partial \mathcal{T}_{T}\right|^{-1} \sum_{u \in \partial \mathcal{T}_{T}} \varphi\left(\zeta_{u}\right) & \xrightarrow{\mathbb{P}} 2 \lambda_{B} \int_{0}^{\infty} \varphi(a) e^{\lambda_{B} a} \frac{f_{B}(a)}{B(a)} d a \\
& =2 \lambda_{B} \int_{0}^{\infty} \varphi(a) e^{\lambda_{B} a} e^{-\int_{0}^{a} B(s) d s} d a
\end{aligned}
$$

- We still have a $N^{1 / 2}$-rate of convergence (in probability).
- We retrieve an ill-posed problem of order 1, leading to convergence rate

$$
N_{B}^{\alpha /(2 \alpha+3)}
$$

but not $N^{\alpha /(2 \alpha+1)!}$.

The age dependent model, simulated data

Figure: Reconstruction of B over $\mathcal{D}=[0.1,4]$ with 95%-level confidence bands constructed over $M=100$ Monte-Carlo trees. In bold red line: $x \rightsquigarrow B(x)$; in bold blue line: $f_{H_{B}}$; in blue line: f_{B}. Left: $T=15$. Right: $T=23$.

Size dependent division rate $B(x)$

- The associated deterministic model is

$$
\left\{\begin{array}{l}
\partial_{t} g(t, x)+\partial_{x}(\kappa(x) g(t, x))+B(x) g(t, x)=4 B(2 x) g(t, 2 x) \\
g(0, x)=g_{0}(x), g(t, 0)=0
\end{array}\right.
$$

- We are interested in recovering $x \mapsto B(x)$ from terminal data

$$
Z_{T} \longleftrightarrow \partial \mathcal{T}_{T} \text { solely. }
$$

- $Z_{t}=\sum_{i=1}^{N_{t}} \delta_{X_{i}(t)}$ with $g(t, \cdot)=\mathbb{E}\left[Z_{t}^{N}\right]$.
- Heuristically $Z_{T} \approx g(T, \cdot)$ when T is large.
- $N=\mathbb{E}\left[\left\langle Z_{T}, \mathbf{1}\right\rangle\right] \rightarrow \infty$ as $T \rightarrow \infty$.
- This is too difficult!

Alternate strategy: "if the data don't fit, change the data!"

- Represent the solution of the transport-fragmentation equation in a stationary regime.
- Obtain a reconstruction formula for $B(x)$ via this representation in terms of the steady-state or stationary density of the model.
- Postulate a proxy model where one observes exactly a drawn from the stationary density.
- Transfer standard nonparametric estimation techniques in this setting.

Solution by stable distribution

- Start with the transport-fragmentation equation $(\kappa(x)=\tau x)$

$$
\partial_{t} g(t, x)+\partial_{x}(\tau x g(t, x))+B(x) g(t, x)=4 B(2 x) g(t, 2 x)
$$

- Ansatz: $g(t, x)=e^{\lambda t} N(x)\left(\lambda=\lambda_{B}\right.$: Malthus parameter $)$.

$$
\partial_{x}(\tau x N(x))+(\lambda+B(x)) N(x)=4 B(2 x) N(2 x) .
$$

- Steady-state approximation: $g(T, x) \approx e^{\lambda T} N(x)$ when $T \rightarrow \infty$ with explicit (fast) rates of convergence.
- Interpretation: $N(x)$ stationary size distribution of a cell in a stationary regime.

A proxy statistical model

- Yields a strategy for the nonparametric estimation of B :

1. Extract from Z_{T} a "sample" X_{1}, \ldots, X_{n} of cell sizes.
2. Postulate the approximation

$$
\mathbb{P}\left(X_{1} \in d x_{1}, \ldots, X_{n} \in d x_{n}\right) \approx \otimes_{i=1}^{n} N\left(x_{i}\right) d x_{i}
$$

If $n \rightarrow \infty$ but $n \ll N$, hope for a chaos propagation property.
3. Recover B through the representation

$$
L(N)=\mathfrak{L}(B N),
$$

or

$$
B=\frac{\mathfrak{L}^{-1} L(N)}{N}
$$

with

$$
\begin{aligned}
& L(\varphi)(x)=\partial_{x}(\tau x \varphi(x))+\lambda \varphi(x), \\
& \mathfrak{L}(\varphi)(x)=4 \varphi(2 x)-\varphi(x) .
\end{aligned}
$$

- The operator $L(\cdot)$ has ill-posedness degree of order 1. The operator \mathfrak{L} is "nicer".

Growth-fragmentation: a word of conclusion

data	Size model	Age model
proxy model	$n^{-\alpha /(2 \alpha+3)}+$ adaptation	irrelevant
$\partial \mathcal{T}_{T}$	$?$	$\left(e^{\lambda_{B} T}\right)^{-\alpha /(2 \alpha+3)}$
genealogical	$n^{-\alpha /(2 \alpha+1)}+$ adaptation	$n^{-\alpha /(2 \alpha+1)}+$ adaptation
$\dot{\mathcal{T}}_{T}$	$?$	$\left(e^{\lambda_{B} T}\right)^{-\alpha /(2 \alpha+1)}$

Bias sampling

Age dependent model
Size model: estimation at a large fixed time in a proxy model

Large population models

Nonlinear extensions, open questions
 Models of interacting neurons
 More non-linear models in a mean-field limit

Construction of the microscopic model

$-b, \mu: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$model parameters.

- $b(t, a)$: fertility rate of the population with age a at time t. $\mu(t, a)$: mortality rate of the population with age a at time t.
- Z_{0} random variable with value in \mathcal{M}_{F}, the set of finite point measures on \mathbb{R}_{+}: initial age distribution of the population at time $t=0$.

Microscopic evolution equation

- Evolution equation for $t \in[0, T]$:

$$
\begin{aligned}
& Z_{t}^{N}=\tau_{t} Z_{0}^{N} \\
& +N^{-1} \int_{0}^{t} \sum_{i \leq\left\langle Z_{s-}^{N}, \mathbf{1}\right\rangle} \int_{0 \leq \theta \leq b\left(s, a_{i}\left(Z_{s-}^{N}\right)\right)} \delta_{t-s}(d a) Q_{1}(d s, d i, d \theta) \\
& -N^{-1} \int_{0}^{t} \sum_{i \leq\left\langle Z_{s-}^{N}, \mathbf{1}\right\rangle} \int_{0 \leq \theta \leq \mu\left(s, a_{i}\left(Z_{s-}^{N}\right)\right)} \delta_{a_{i}\left(Z_{s-}\right)+t-s}(d a) Q_{2}(d s, d i, d \theta)
\end{aligned}
$$

- Q_{i} : two independent random Poisson measures on $\mathbb{R}_{+} \times \mathbb{N} \times \mathbb{R}_{+}$with intensity $d t\left(\sum_{k \geq 1} \delta_{k}(d i)\right) d \theta$.

Microscopic evolution equation

Figure: Left: Sample path of $N Z_{0}^{N}$ (da) with $N=3$ and its evolution without births. Right: Sample path of $\left(N Z_{t}^{N}(d a), t \in[0, T]\right)$.

Large population limit

- $N \rightarrow \infty$ abstract asymptotic parameter.
- Reminiscent of a population size : $\left\langle N Z_{t}^{N}, \mathbf{1}\right\rangle \approx N$ for every $t \in[0, T]$.
- T is fixed throughout!
- If $Z_{0}^{N} \approx g_{0}(a) d a$, then $Z_{t}^{N}(d a) \approx \xi_{t}(d a)=g(t, a) d a$.
- $g(t, a)$ weak solution to the McKendrick \& Von Foerster equation

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} g(t, a)+\frac{\partial}{\partial a} g(t, a)+\mu(t, a) g(t, a)=0 \\
g(0, a)=g_{0}(a), g(t, 0)=\int_{\mathbb{R}_{+}} b(t, a) g(t, a) d a
\end{array}\right.
$$

Identifiability of the parameters

- Under a suitable approximation $Z_{0}^{N} \approx \phi \rightsquigarrow$ identification of ϕ.
- Need to understand how $Z_{0}^{N} \approx \phi$ propagates to $Z_{t}^{N} \approx g(t, \cdot)$ for $t \in[0, T]$.
- Claim: Under "suitable propagation", we can identify g from Z^{N}.
- Claim: Likewise, we can identify μ from Z^{N}.
- We cannot identify b from Z^{N} for lack of injectivity of $b \mapsto g$.

First estimators

- Statistical objective: estimate $g(t, a)$ and $\mu(t, a)$ from data $\left(Z_{t}^{N}, t \in[0, T]\right)$.
- First kernel estimator of $g(t, a)$:

$$
\hat{g}_{\boldsymbol{h}}^{\text {prel }}(t, a)=\int_{0}^{T} \int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(t-s, a-u) Z_{s}^{N}(d u)
$$

- We will see that both bias and variance of $\hat{g}_{\boldsymbol{h}}^{\text {prel }}(t, a)$ behave poorly!

First estimator of the mortality rate μ

- Extract from Z^{N} the mortality process

$$
\Gamma^{N}(d t, d a)=\sum_{k \geq 1} \delta_{\left(T_{k}^{N}, A_{k}^{N}\right)}
$$

$\left(T_{k}^{N}, A_{k}^{N}\right)=($ time of death, age at death $)$ of the k-th occurence of mortality.

- First kernel estimator of μ :

$$
\widehat{\mu}_{\boldsymbol{h}}^{\text {prel }}(t, a)=\frac{\int_{0}^{T} \int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(t-s, a-u) \Gamma^{N}(d s, d u)}{\hat{g}(t, a)}
$$

given an estimator of $g(t, a)$ of $\widehat{g}(t, a)$.

- bias of $\widehat{\mu}_{\boldsymbol{h}}^{\text {prel }}(t, a)$ behaves poorly + inherits of the possible defects of $\widehat{g}(t, a)$.

Hölder regularity of the limit

- Look for the regularity of g as the solution of the Mc Kendrick \& Von Foerster equation:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} g(t, a)+\frac{\partial}{\partial a} g(t, a)+\mu(t, a) g(t, a)=0 \\
g(0, a)=\phi(a), g(t, 0)=\int_{\mathbb{R}_{+}} b(t, a) g(t, a) d a
\end{array}\right.
$$

- Assumption: $b \in \mathcal{H}^{\alpha, \beta}, \mu \in \mathcal{H}^{\gamma, \delta}, \phi \in \mathcal{H}^{\nu}$ for some $\alpha>0, \beta>0, \gamma>0, \delta>0, \nu \gg 1$.
- Theorem

We have

$$
g \mathbf{1}_{\{a<t\}} \in \mathcal{H}^{\min (\alpha, \beta, \gamma+1, \delta), \min (\alpha, \beta, \gamma+1, \delta)}
$$

and

$$
g \mathbf{1}_{\{a>t\}} \in \mathcal{H}^{\min (\gamma+1, \delta), \max (\min (\gamma, \delta+1), \delta)} .
$$

Hölder regularity of the limit

Figure: $g \in \mathcal{H}^{\min (\alpha, \beta, \gamma+1, \delta), \min (\alpha, \beta, \gamma+1, \delta)}$ on \mathcal{D}_{L} and $g \in \mathcal{H}^{\min (\gamma+1, \delta), \max (\min (\gamma, \delta+1), \delta)}$ on \mathcal{D}_{u}.

Hölder regularity of the limit

- "Improve" the smoothness of $g \rightsquigarrow$ change of coordinates.
- With $\varphi(t, a)=(t, t-a)$, we have

$$
\mathcal{D}_{L} \xrightarrow{\varphi} \widetilde{\mathcal{D}}_{L}=\mathcal{D}_{L} \text { and } \mathcal{D}_{U} \xrightarrow{\varphi} \widetilde{\mathcal{D}}_{U}=\left\{a^{\prime}<0,0 \leq t \leq T\right\},
$$

- Define \widetilde{g} via

$$
g(t, a)=\widetilde{g} \circ \varphi(t, a)
$$

- Theorem

We have (with $\widetilde{g}\left(t, a^{\prime}\right)=g\left(t, t-a^{\prime}\right)$)

$$
\tilde{g}\left(t, a^{\prime}\right) \mathbf{1}_{\left\{0<a^{\prime}<t\right\}} \in \mathcal{H}^{\min (\gamma+1, \delta+1), \min (\alpha, \beta, \gamma+1, \delta)}
$$

and

$$
\widetilde{g}\left(t, a^{\prime}\right) \mathbf{1}_{\left\{a^{\prime}<0\right\}} \in \mathcal{H}^{\min (\gamma+1, \delta+1), \max (\min (\gamma, \delta+1), \delta)}
$$

Reconstruction of g

- Estimate g on $\mathcal{D}_{U}=\left\{(t, a) \in(0, T) \times\left(0, a_{\max }\right), t<a\right\}$ and $\mathcal{D}_{L}=\{(t, a), 0<a<t<T\}$ separately.

$$
\widehat{g}_{\boldsymbol{h}}^{\mathrm{prel}}(t, a)=\int_{0}^{T} \int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(t-s, a-u) Z_{s}^{N}(d u) d s
$$

- We estimate $g(t, a)$ in the direction suggested by $\widetilde{g}(t, a)$ in order to benefit from its smoothness:

$$
\hat{g}_{N, \boldsymbol{h}}^{\text {inter }}(t, a)=\int_{0}^{T} \int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(t-s,(t-s)-(a-u)) Z_{s}^{N}(d u) d s
$$

Reconstruction of d via $\widehat{g}_{N, \boldsymbol{h}}$ and the process Γ^{N}

- We also estimate $\mu(t, a)=\mu(t, a) g(t, a) / g(t, a)$ in the direction suggested by $\widetilde{g}(t, a)$:

$$
\widehat{\mu}_{N, \boldsymbol{h}, h^{\prime}}^{\text {inter }}(t, a)=\frac{\int_{0}^{T} \int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(t-s,(t-s)-(a-u)) \Gamma_{s}^{N}(d u)}{\widehat{g}_{N, h}^{\text {inter }}(t, a)}
$$

Stochastic error analysis for g

- We now look for a control $g_{\boldsymbol{h}}(t, a) \approx \widehat{g}_{N, \boldsymbol{h}}^{\text {inter }}(t, a)$, with

$$
g_{\boldsymbol{h}}(t, a)=\int_{0}^{T} \int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(t-s,(t-s)-(a-u)) g(s, u) d u d s
$$

- We have

$$
\widehat{g}_{N, \boldsymbol{h}}^{\text {inter }}(t, a)=\int_{0}^{T} \int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(t-s,(t-s)-(a-u)) Z_{s}^{N}(d u) d s
$$

- We need

$$
Z_{s}^{N}(d u) d s \approx g(s, u) d u d s
$$

in an appropriate sense (related to $K_{\boldsymbol{h}}$) as $N \rightarrow \infty$.

Toward a coherence property

- How does a suitable assumption on $\operatorname{dist}\left(Z_{0}^{N}, \xi_{0}\right)$ propagates to $\operatorname{dist}\left(Z_{t}^{N}, \xi_{t}\right)$ as $N \rightarrow \infty$? For which $\operatorname{dist}(\cdot, \cdot)$? (coherence)
- Introduce a pseudo-distance related to a weight function $\psi \in L^{\infty}(\mathbb{R})$. For a suitable class of functions \mathcal{F} let

$$
\mathbb{W}_{\psi}(\mu, \nu)=\sup _{\varphi \in \mathcal{F}}\left|\int_{\mathbb{R}_{+}} \psi(a) \varphi(a)(\mu(d a)-\nu(d a))\right|
$$

- For instance, if \mathcal{F} consists of 1-Lipschitz functions, reminiscent of a weighted Wasserstein-1 distance in the degenerate case $\psi=1$.

Toward a coherence property

- Assume $\mathbb{W}_{\psi}\left(Z_{0}^{N}, \xi_{0}\right) \lesssim w_{N}$ for some (small) w_{N}.
- Seek a bound of the form

$$
\mathbb{W}_{\psi(?)}\left(Z_{t}^{N}, \xi_{t}\right) \stackrel{P}{\lesssim} w_{N}+\delta_{N} \text { for } t \in[0, T]
$$

for some (small) δ_{N} that controls the error propagation.

- For $\delta_{N} \lesssim w_{N}$, we say that we have a coherence property.

Toward a coherence property

- Assumption: (Initial approximation): For some $p \geq 2$

$$
\mathbb{E}\left[\mathbb{W}_{\psi}\left(Z_{0}^{N}, \xi_{0}\right)^{p}\right] \lesssim|\psi|_{\infty}^{p / 2}|\psi|_{1}^{p / 2} w_{N}^{p}
$$

with $w_{N} \rightarrow 0$ as $N \rightarrow \infty$.

- If $Z_{0}^{N}=N^{-1} \sum_{i=1}^{N} \delta_{A_{i}}$ for IID A_{i}, we expect $w_{N} \approx N^{-1 / 2}$.

Coherence property

- $\mathcal{N}\left(\mathcal{F},|\cdot|_{\infty}, \epsilon\right)$ minimal number of ϵ-balls in $|\cdot|_{\infty}$ norm necessary to cover \mathcal{F}.
- Assume: $\int_{0}^{1} \log \left(1+\mathcal{N}\left(\mathcal{F},|\cdot|_{\infty}, \epsilon\right)\right) d \epsilon<\infty+$ 'some' stability for \mathcal{F}.

Theorem (Coherence property)
We have for all $t \in[0, T]$

$$
\mathbb{E}\left[\mathbb{W}_{\psi(t-)}\left(Z_{t}^{N}, \xi_{t}\right)^{p}\right] \lesssim|\psi|_{\infty}^{p / 2}|\psi|_{1}^{p / 2} w_{N}^{p} \vee N^{-p / 2}
$$

Stochastic error analysis for g

- With $G=K^{(1)}(\cdot-t)$ and $H=K^{(2)}(\cdot-(t-a))$:

$$
\begin{aligned}
& \left|\widehat{g}_{N, \boldsymbol{h}}(t, a)-g_{\boldsymbol{h}}(t, a)\right| \\
= & \left|\int_{0}^{T} G_{h_{1}}(s) \int_{\mathbb{R}_{+}} H_{h_{2}}(s-u)\left(Z_{s}^{N}(d u)-g(s, u)\right) d s\right| \\
\leq & \int_{0}^{T}\left|G_{h_{1}}(s)\right| \mathbb{W}_{\left.H_{h_{2}(s-\cdot)}\right)}\left(Z_{s}^{N}, \xi_{s}\right) d s
\end{aligned}
$$

- Using the coherence property we get $\forall(t, a) \in \mathcal{D}_{L} \cup \mathcal{D}_{U}$

$$
\mathbb{E}\left[\left|\widehat{g}_{N, \boldsymbol{h}}(t, a)-g_{\boldsymbol{h}}(t, a)\right|^{2}\right] \lesssim w_{N}^{2} \vee N^{-1} \frac{\left|K^{(1)}\right|_{2}^{2}\left|K^{(2)}\right|_{\infty}\left|K^{(2)}\right|_{1}}{h_{1} h_{2}}
$$

- Appended with the previous bias control

Convergence rates

- Anisotropic rate $v(t, a)^{-1}$

$$
= \begin{cases}\min (\gamma+1, \delta+1)^{-1}+\left(\min (\alpha, \beta, \gamma+1, \delta)^{-1}\right. & \text { on } \mathcal{D}_{L}(t, a) \\ \min (\gamma+1, \delta+1)^{-1}+\left(\max (\min (\gamma, \delta+1), \delta)^{-1}\right. & \text { on } \mathcal{D}_{U}(t, a)\end{cases}
$$

Theorem
We have for pointwise (non-adaptive) optimisation of \boldsymbol{h} :
$\sup \mathbb{E}\left[\left(\widehat{g}_{N, \boldsymbol{h}}^{\text {inter }}(t, a)-g(t, a)\right)^{2}\right] \lesssim\left(w_{N}^{2} \vee N^{-1}\right)^{2 v(t, a) /(2 v(t, a)+1)}$. $b, \mu, \phi,(t, a)$

- Supremum in (t, a) over compacts of $\mathcal{D}_{L} \cup \mathcal{D}_{U}$ and in (b, μ, ϕ) over (balls) of Hölder classes
- This result is not optimal!

Optimal estimation of g (and subsequently μ)

- The stochastic error for $\widehat{g}_{N, \boldsymbol{h}}^{\text {inter }}$ is stable as $h_{1} \rightarrow 0$!
- $G_{h_{1}}(t-\cdot)=G_{h_{1}=0}(t-\cdot)=\delta_{t}$ works! Estimating $g(t, \cdot)$ is a univariate problem, for each $t \in[0, T]$.
- This is no longer true for statistics based on $\Gamma^{N}(d t, d a)$: need a bivariate anisotropic estimator for estimating $\mu(t, a)$ together with a choice of direction dictated by \widetilde{g}.
- Final estimators

$$
\widehat{g}_{N, h}^{\mathrm{fin}}(t, a)=\int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(a-u) Z_{t}^{N}(d u)
$$

and

$$
\widehat{\mu}_{N, \boldsymbol{h}, h}^{\mathrm{fin}}(t, a)=\frac{\int_{0}^{T} \int_{\mathbb{R}_{+}} K_{\boldsymbol{h}}(t-s,(t-s)-(a-u)) \Gamma_{s}^{N}(d u)}{\widehat{g}_{N, h}^{\text {fin }}(t, a)}
$$

Convergence rates for $\widehat{g}_{n, h}^{\text {fin }}$

- Our (univariate) rate estimation for g :

$$
v_{1}^{\star}(t, a)=\min \{\alpha, \beta, \gamma+1, \delta\} \mathbf{1}_{\mathcal{D}_{L}(t, a)}+\max (\min (\gamma, \delta+1), \delta) \mathbf{1}_{\mathcal{D}_{U}(t, a)} .
$$

Theorem
We have, $\forall(t, a) \in \mathcal{D}_{L} \cup \mathcal{D}_{U}$, for pointwise (non-adaptive) optimisation of \boldsymbol{h} :

$$
\sup _{b, \mu, \phi,(t, a)} \mathbb{E}\left[\left(\widehat{g}_{N, \boldsymbol{h}}^{\mathrm{fin}}(t, a)-g(t, a)\right)^{2}\right] \lesssim\left(w_{N}^{2} \vee N^{-1}\right)^{2 v_{1}^{\star}(t, a) /\left(2 v_{1}^{\star}(t, a)+1\right)}
$$

- Minimax lower bound: $N^{-2 \min (\gamma, \delta) /(2 \min (\gamma, \delta)+1)}$.
- Minimax optimality: on \mathcal{D}_{U} if $\delta \leq \gamma \leq \delta+1$ and on \mathcal{D}_{L} if $\delta-1 \leq \gamma \leq \delta$ and $\delta \geq \gamma$.

Convergence rates for $\widehat{\mu}_{N, \boldsymbol{h}, h}^{\mathrm{fin}}$

- Our (bivariate) rate estimation for $\mu: v_{2}^{\star}(t, a)$

$$
= \begin{cases}\min (\gamma, \delta)^{-1}+\min (\alpha, \beta, \gamma+1, \delta)^{-1} & \text { on } \mathcal{D}_{L} \\ \min (\gamma, \delta)^{-1}+\delta^{-1} & \text { on } \mathcal{D}_{U}\end{cases}
$$

Theorem
We have, $\forall(t, a) \in \mathcal{D}_{L} \cup \mathcal{D}_{U}$, for pointwise (non-adaptive) optimisation of \boldsymbol{h} :

$$
\sup _{b, \mu, \phi,(t, a)} \mathbb{E}\left[\left(\widehat{\mu}_{N, \boldsymbol{h}, h}^{\mathrm{fin}}(t, a)-\mu(t, a)\right)^{2}\right] \lesssim\left(w_{N}^{2} \vee N^{-1}\right)^{2 v_{2}^{\star}(t, a) /\left(2 v_{2}^{\star}(t, a)+1\right)}
$$

- Minimax lower bound: $N^{-2 s(\gamma, \delta) /(2 s(\gamma, \delta)+1)}$ with $s(\gamma, \delta)^{-1}=\gamma^{-1}+\delta^{-1}$.
- Minimax optimality: If $\gamma \leq \delta$ on \mathcal{D}_{U} and if $\gamma \leq \delta \leq \gamma+1$ on \mathcal{D}_{L}.

Toward smoothness adaptation

- Let

$$
\mathbb{W}_{\psi}(\xi ., \zeta .)=\sup _{\varphi \in \mathcal{F}}\left|\int_{0}^{T} \int_{\mathbb{R}_{+}} \psi(s, s-u) \varphi(s, u)\left(\xi_{s}(d u)-\zeta_{s}(d u)\right)\right| d s .
$$

Theorem

Theo Under a proper modification of the initial approximation at $t=0$, we have, with $\xi^{N}=\Gamma^{N}\left(\right.$ resp. $\left.Z^{N}\right)$ and $\zeta=\mu g$ (resp.g)

$$
P\left(\mathbb{W}_{\psi}\left(\xi^{N}, \zeta\right) \geq C w_{N} \wedge N^{-1 / 2}\left(\|\psi\|_{\infty}\|\psi\|_{1}\right)^{1 / 2}+u\right) \leq \varepsilon_{N}(\psi, u)
$$

with $\varepsilon_{N}(\psi, u)=C^{\prime}\left(e^{C^{\prime \prime} N u^{2}\left(\|\psi\|_{\infty}\|\psi\|_{1}\right)^{-1}}-1\right)^{-1}$.

- yields proper tools to study the deviation of $\widehat{g}_{N, h}^{\text {fin }}(t, a)-g_{h}(t, a)$ and $\widehat{\mu}_{N, \boldsymbol{h}}^{\text {fin }}(t, a)-g_{\boldsymbol{h}}(t, a) \rightsquigarrow$ adaptation.

Oracle inequalities

- Goldenschluger-Lepski \rightsquigarrow data driven bandwidth \widehat{h}_{N} and $\widehat{\boldsymbol{h}}_{N}$.

Theorem (Oracle inequality)
We have, for any $(t, a) \in \mathcal{D}_{L} \cup \mathcal{D}_{U}$

$$
\mathbb{E}\left[\left(\widehat{f}_{N}(t, a)-f(t, a)\right)^{2}\right] \leq C \inf _{\kappa} \mathbb{E}\left[\left(\widehat{f}_{N, \kappa}(t, a)-f(t, a)\right)^{2}\right]+\delta_{N},
$$

with $\widehat{f}_{N}=\widehat{g}_{N, \widehat{\boldsymbol{h}}_{N}}^{\text {fin }}\left(\right.$ resp. $\left.\widehat{\mu}_{N, h, \boldsymbol{h}}^{\text {fin }}(t, a)\right)$ and $f=g($ resp. $\mu)$ and $\kappa=h(r e s p .(h, \boldsymbol{h}))$, where $\delta_{N}=O\left(N^{-1}\right)$ up to a constant depending on $b_{\text {max }}, \mu_{\text {max }}, T, \phi$.

- Adaptation over appropriate domains according to the preceding results.

Some numerical illustration

$$
\text { - } \mu(t, a)=410^{-4} \exp \left(810^{-3} a\right), b=, \phi(a) d a \sim \mathcal{N}\left(60,20^{2}\right)
$$ conditioned upon $[0,120]$.

Figure: Unknown g. X-axis: time (0 to 100 years), Y-axis: age (0 to 120 years).

Some numerical illustration

- $N=10^{3}, 510^{3}, 10^{4}, 210^{4}, 510^{4}, 10^{5}$ over 10 MC samples.
- $K^{(1)}=K^{(2)}=$ Gaussian kernel.
- Calibration parameters... !

Figure: Rate estimation of $g(t, a) .(t, a)=(40,60) \in \mathcal{D}_{U}$ (left) and $(t, a)=(60,90) \in \mathcal{D}_{L}$ (right). Green $=$ True, Blue $=$ Oracle, Red $=$ estimator via GL.

Some numerical illustration

- $N=10^{3}, 510^{3}, 10^{4}, 210^{4}, 510^{4}, 10^{5}$ over 10 MC samples.
- $K^{(1)}=K^{(2)}=$ Gaussian kernel.
- Calibration parameters... !

Figure: Rate estimation of $\mu(t, a) .(t, a)=(40,60) \in \mathcal{D}_{U}$ (left) and $(t, a)=(60,90) \in \mathcal{D}_{L}$ (right) Green $=$ True, Blue $=$ Oracle, Red $=$ estimator via GL.

Conclusion: needed improvements

S

- Complete minimax optimality (\rightsquigarrow shed light on the anisotropic structure).
- Study the birth rate estimation $b(t, a)$ (inverse problem) \rightsquigarrow ill - posed. Modification of the problem.
- Generalisation to other transports and some interactions ?

Generalisations: arbitrary transport + interactions

- Can we extend our results to dynamics of the form

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} g(t, a)+\frac{\partial}{\partial a}(v(a) g(t, a))+ \\
+\left(\mu(t, a)+\int_{\mathbb{R}_{+}} U(a, y) g(t, y) d y\right) g(t, a)=0 \\
g(0, a)=\phi(a), \quad g(t, 0)=\int_{\mathbb{R}_{+}} b(t, a) g(t, a) d a
\end{array}\right.
$$

- In particular, can we build consistent tests for detecting the presence of an interaction?

Bias sampling
Age dependent model
Size model: estimation at a large fixed time in a proxy model

Large population models

Nonlinear extensions, open questions
Models of interacting neurons
More non-linear models in a mean-field limit

A model of interacting neurons

- Modelling the evolution of the electrical potentials of a system of N spiking neurons.
- De Masi et al. (2015), Löcherbach and Fournier (2015) following De Masi and Galvez (2013).
- Each neuron spikes randomly with rate $B(u)$ depending on the membrane potential u of the neuron.

1. At spiking time,

- Spiking membrane is reset to a resting potential (here $u=0$).
- Action of chemical synapses increases the potential of other neurons by N^{-1}.

2. Action of electrical synapses synchronises the potentials of the system.

- We model the distribution of membrane potentials of a system of N neurons through time.

Example 4: a model of interacting neurons

- $\left(U_{i}(t)\right)_{1 \leq t \leq N}=$ the membrane potentials at time t.
- $Z_{t}^{N}=N^{-1} \sum_{i=1}^{N} \delta_{U_{i}(t)}$.

Associated SDE

$$
\begin{aligned}
& Z_{t}^{N}=\phi_{Z_{0}^{N}}(t) \\
& +\frac{1}{N} \int_{0}^{t} \sum_{i=1}^{N} \int_{0 \leq \theta \leq B\left(u_{i}\left(Z_{s-}^{N}\right)\right)}\left(\delta_{\phi_{0}(t-s)}-\delta_{\phi_{u_{i}\left(Z_{s-}^{N}\right)}^{N}(t-s)}\right) Q^{i}(d s, d \theta) \\
& +\frac{1}{N} \int_{0}^{t} \sum_{i=1, j \neq i}^{N} \int_{\theta \leq B\left(u_{j}\left(Z_{s-}\right)\right)}\left(\delta_{\phi_{u_{i}\left(Z_{s-}^{N}\right)+N^{-1}}(t-s)}-\delta_{\left.\phi_{u_{i}\left(Z_{s-}\right.}^{N}\right)}(t-s)\right.
\end{aligned} Q^{j}(d s, d \theta) . ~ \$
$$

- $\left(Q^{i}\right)_{1 \leq i \leq N}$ independent Poisson measures, intensity $d s \otimes d \theta$.
- $\phi_{\sum_{i} \delta_{u_{i}}}(t)=\sum_{i} \delta_{\phi_{u_{i}}(t)}$.

Example 4: a model of interacting neurons

- Mean-field limit $N \rightarrow \infty$.
- Example 4.1: The simplest case when synchronization is ignored: $\phi_{u}(t)=u$ for every $t \geq 0$.
- If $Z_{0}^{N} \approx g_{0}(u) d u$, then $Z_{t}^{N}(d u) \approx \xi_{t}(d u)=g(t, u) d u$.
- $g(t, u)$ weak solution to the nonlinear evolution equation

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} g(t, u)+\langle g(t, \cdot), B\rangle \frac{\partial}{\partial u} g(t, u)+B(u) g(t, u)=0 \\
g(0, u)=g_{0}(u), g(t, 0)=1
\end{array}\right.
$$

- The nonlinearity in the limiting model reflects the interactions of the individuals.

Example 4.2: a model of interacting neurons with

 stochastic flow- Case of a stochastic flow $\frac{d}{d t} \phi_{x}(t)=\kappa\left(\phi_{x}(t), Z_{t}^{N}\right) d t$, with mean-reverting

$$
\kappa\left(x, Z_{t}^{N}\right)=-\lambda\left(x-Z_{t}^{N}\right), \quad \lambda \geq 0
$$

- If $Z_{0}^{N} \approx g_{0}(u) d u$, then $Z_{t}^{N}(d u) \approx \xi_{t}(d u)=g(t, u) d u$.
- $g(t, u)$ weak solution to the evolution equation

$$
\left\{\begin{array}{l}
\partial_{t} g+(\langle g(t, \cdot), B\rangle-\lambda u) \partial_{u} g+(B(u)-\lambda) g=0, \\
g(0, u)=g_{0}(u), g(t, 0)=\frac{\langle g(t, \cdot), B\rangle}{\langle B+\lambda \cdot, g(t, \cdot)\rangle} .
\end{array}\right.
$$

Example 4.1 and 4.2: identification of the objects of

 interestWe can identify the following objects

- $N \rightarrow \infty$.
- Z^{N} is $\left(Z_{t}^{N}\right)_{0 \leq t \leq T}$ and we observe $\mathcal{Z}^{N}=Z^{N}$ or a uniform sample of size $n \ll N$ extracted from Z^{N}.
- f is $(t, u) \mapsto g(t, u)$ or $x \mapsto B(u)$.
- \mathcal{H}^{N} and \mathcal{H} are the SDE and the nonlinear transport evolution equation.
Observation schemes

More non-linear models in a large population model

- Interaction between particles can play at various levels. We elaborate briefly on three more examples.
- Example 3.2: Birth-and-death processes with population dependent death rate.
- Example 5: Interacting Hawkes processes.
- Example 6: The McKean-Vlasov model and the effect of diffusion.

Example 3.2: nonlinear death rate in population models

- In Example 3, we replace the death rate $B(t, a)$ by

$$
B\left(t, a, Z_{t}^{N}\right)=B(t, a)+\int_{\mathbb{R}_{+}} U\left(a, a^{\prime}\right) Z_{t}^{N}\left(d a^{\prime}\right)
$$

for some kernel $U: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

- The kernel U accounts for some population dependent pressure on the death rate.
- If $Z_{0}^{N} \approx g_{0}(a) d a$, then $Z_{t}^{N}(d a) \approx g(t, a) d a$.
- $g(t, a)$ weak solution of the nonlinear evolution equation

$$
\left\{\begin{array}{l}
\left(\partial_{t}+\partial_{a}\right) g(t, a)+\left(B(t, a)+\int_{\mathbb{R}_{+}} U\left(a, a^{\prime}\right) g\left(t, a^{\prime}\right)\right) g(t, a)=0 \\
g(0, u)=g_{0}(u), g(t, 0)=\int_{0}^{\infty} b(t, a) g(t, a) d a
\end{array}\right.
$$

Example 5: interacting Hawkes processes

- We consider a system of point processes interacting through their jump intensities.
- Point process: $N_{t}=\sum_{i \geq 1} \mathbf{1}_{\left\{T_{i} \leq t\right\}}$ where

$$
T_{0}=0 \leq T_{1}<T_{2}<\ldots<T_{i}<\ldots \text { jump times }
$$

- Simplest example: Poisson process with intensity $\lambda>0$:
- The $T_{i}-T_{i-1}$ are independent and $\operatorname{Exp}(\lambda)$ distributed.
- Alternative representation:

$$
N_{t}=\int_{0}^{t} \int_{0 \leq \theta \leq \lambda} Q(d s, d \theta)
$$

Q: Poisson random measure with intensity $d s \otimes d \theta$.

Example 5: univariate Hawkes processes

- Nonlinear Hawkes processes: replace λ by a random past dependent stochastic intensity

$$
\lambda_{t}=h\left(\lambda+\int_{0}^{t-} \varphi(t-s) d N_{s}\right)
$$

- $h: \mathbb{R} \rightarrow \mathbb{R}_{+}(h(x)=x:$ linear Hawkes processes.)
- $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ causal interacting kernel: $\operatorname{Supp}(\varphi) \subset \mathbb{R}_{+}$.
- Interpretation: with $\mathcal{F}_{t}=\sigma\left(N_{s}, s \leq t\right)$,

$$
\mathbb{P}\left(N_{t+d t}-N_{t} \geq 1 \mid \mathcal{F}_{t-}\right)=\lambda_{t} d t
$$

- Alternative representation as a SDE:

$$
N_{t}=\int_{0}^{t} \int_{0 \leq \theta \leq h\left(\lambda+\int_{0}^{s-} \varphi(s-u) d N_{u}\right)} Q(d s, d \theta)
$$

Example 5: interacting Hawkes processes

- System of nonlinear Hawkes processes: defined by the family of SDE: for $i=1, \ldots, N$,

$$
N_{t}^{i}=\int_{0}^{t} \int_{0 \leq \theta \leq h\left(\lambda+N^{-1} \sum_{j=1}^{N} \int_{0}^{s-} \varphi(s-u) d N_{u}^{j}\right)} Q^{i}(d s, d \theta),
$$

Q^{i} ind. Poisson, intens. $d s \otimes d \theta$.

- $Z_{t}^{N}=N^{-1} \sum_{i=1}^{N} \delta_{N_{t}^{i}}$.
- Mean-field limit: $Z_{t}^{N}(d s) \approx g(t, d s)$ as $N \rightarrow \infty$.
- g is a weak solution of

$$
\left\{\begin{array}{l}
\partial_{t} g(t, s)+h\left(\int_{0}^{t} \varphi(t-u) d m_{u}\right)(g(t, s)-g(t, s-1))=0 \\
g(0, s)=\delta_{0}(d s), m_{t}=\int_{0}^{t} h\left(\int_{0}^{s} \varphi(s-u) d m_{u}\right) d s
\end{array}\right.
$$

Example 6: McKean-Vlasov model

- System of N interacting diffusion processes:

$$
d X_{t}^{i}=-b\left(X_{t}^{i}\right) d t-N^{-1} \sum_{j=1}^{N} U\left(X_{t}^{i}-X_{t}^{j}\right) d t+\sigma d B_{t}^{i}, i=1, \ldots, N
$$

B_{t}^{i} ind. Brownian motions.

- $Z_{t}^{N}=N^{-1} \sum_{i=1}^{N} \delta_{N_{t}^{i}}$.
- Mean-field limit: if $Z_{0}^{N}(d x) \approx g_{0}(d x)$, then $Z_{t}^{N}(d x) \approx g(t, x) d x$.
- $g(t, s)$ is a weak solution to the McKean-Vlasov equation

$$
\left\{\begin{array}{l}
\partial_{t} g(t, x)+\partial_{x} g(b+U \star g)=\frac{\sigma^{2}}{2} \partial_{x}^{2} g \\
g(0, x)=g_{0}(d x)
\end{array}\right.
$$

THANK YOU FOR YOUR ATTENTION!

Some references

- A. Boumezoued, M.H. and P. Jeunesse. Nonparametric adaptive inference of birth and death models in a large population limit, Preprint, 2019. arXiv:1903.00673.
- M.H., A. Marguet. Statistical estimation in a randomly structured branching population. SPA, 2019. arXiv:1712.04404
- S.V. Bitseki Penda, M.H. and A. Olivier. Adaptive estimation for bifurcating Markov chains. Bernoulli, 23, 3598-3637, 2017. arXiv:1509.03119
- M.H. and A. Olivier. Nonparametric estimation of the division rate of an age dependent branching process. SPA, 126, 1433-1471, 2016. arXiv:1412.5936.
- M. Doumic, M.H., N. Krell and L. Robert. Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli, 21, 1760-1799, 2015. arXiv:1210.3240.
- M. Doumic, M.H., P. Reynaud-Bouret and V. Rivoirard. Nonparametric estimation of the division rate of a size-structured population. SINUM, 50, 925-950, 2012. arXiv:1103.4226

