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General overview of the course

This course will provide an introduction to the Bayesian approach to
inverse problems, including introduction of the Bayesian formulation,
computational challenges and related algorithms.

A rough outline is as follows:
@ Lecture 1: Introduction
@ Lecture 2: Algorithms in finite dimensions

@ Lecture 3: Algorithms in infinite dimensions

o Lecture 4: Exercises (Jupyter notebook)
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Outline of today’s lecture

@ What are inverse problems?

© Bayesian approach

© Markov chain Monte Carlo methods
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What are inverse problems?

Definition and applications

@ An inverse problem is concerned with determining causal factors from
observed data.

@ In mathematical terms, we want to determine model inputs based on
(partial and noisy) observations of model outputs.
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What are inverse problems?

Definition and applications

@ An inverse problem is concerned with determining causal factors from
observed data.

@ In mathematical terms, we want to determine model inputs based on
(partial and noisy) observations of model outputs.

@ Inverse problems appear in many different areas, including:

» computational imaging: recovering the true image from a blurred and
noisy observation;

» geophysics: inferring the conductivity of the subsurface from
measurements at wells;

» machine learning. building an underlying model from observed data
points,

» non-destructive testing, astrophysics, medicine, weather prediction, ...
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What are inverse problems?

Mathematical formulation

@ Suppose we are given a mathematical model of a process, represented
by a (linear or non-linear) map G.

@ We are interested in the following inverse problem: given
observational data y € Y, determine unknown u € U such that

y=G(u)+n.

@ Here, 1 represents observational noise, due to for example
measurement error (inaccurate instruments).
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What are inverse problems?
Example 1: Imaging
@ Goal: reconstruct an image u given a noisy, partial observation y
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What are inverse problems?
Example 1: Imaging
@ Goal: reconstruct an image u given a noisy, partial observation y

@ Unknown u € R%: the pixel values of the image

@ Map G: The map G = G € R%*%: is linear in many imaging
problems, where GG incorporates mechanisms such as
» blurring (— averaging over a neighbourhood of pixels)
» Fourier transform (— observations in frequency domain)
» a mask (— partial observations)

@ Observations: y = Gu +n € R%.
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What are inverse problems?
Example 1: Imaging

o Particular example: Deblurring (without noise).

The map G is defined by its action on each

pixel value:
g w;juj,
JEN(i)

where

@ y; is the ith pixel value of the blurred
image,

@ N(i) is neighbourhood of pixel i,
@ wj; are weights indicating the
importance of each pixel j € N(), and

@ u;j is the jth pixel value of the original
image.

Blurred
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What are inverse problems?
Example 2: Regression
@ Goal: reconstruct a function f given noisy point values {f(z;)}.
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What are inverse problems?

Example 2: Regression

e Goal: reconstruct a function f given noisy point values {f(z;)}.

e Unknown u € R%: coefficients in a basis expansion
dy
flwsu) =Y ujoi(x),
j=1

where {Cﬁj}?il are linearly independent, e.g. ¢;(z) = 2971,

e Map G: implicitly defined by u +— {f(z;;u) ?il. Infact G =G is
linear, with a;; = ¢;(x;) (Vandermonde-type matrix).
@ Observations: y = {f(x;;u) + m}di’

1=

d,
, € R,
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What are inverse problems?

Example 3: Porous media flow

@ Goal: reconstruct the hydraulic conductivity k of the subsurface given
noisy measurements of the water pressure {p(z;)}.
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What are inverse problems?

Example 3: Porous media flow

@ Goal: reconstruct the hydraulic conductivity k& of the subsurface given
noisy measurements of the water pressure {p(x;)}.

@ Unknown u € R%:: coefficients in a basis expansion
dy
k(x;u) = ¢o(x) + Zujqﬁj(a:),
j=1

where {¢; ;l“l are linearly independent and ¢q is s.t. k is positive.

@ Map G: implicitly defined by u — {p(xi;u)}?il, where p is the
solution of
=V (k(z;u)Vp(z;u)) = h(z).

(This equation comes from Darcy's law plus conservation of mass:
conductivity k, pressure head p, sources/sinks h.)

@ Observations: y = {p(x;;u) + m}?il € R,
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What are inverse problems?

General inverse problems

@ We are interested in the following inverse problem: given
observational data y € Y, determine unknown u € U such that

y=G(u)+n.

@ Simply "inverting G is not possible, since
» we do not know the value of 7, and
» typically G~ does not exist.

(Think about the case where G is linear, i.e. G = G € R% >4 Unless
d, = dy, G™! does not exist.)
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What are inverse problems?

Ill-posedness and ill-conditioning of inverse problems

@ Intuitively, we want to choose u to minimise the data misfit functional

J(uyy) = lly = G(w)3.
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What are inverse problems?

Ill-posedness and ill-conditioning of inverse problems

@ Intuitively, we want to choose u to minimise the data misfit functional

J(u;y) = |ly — G(u)|3.
@ However, the optimisation problem v* := arg min,c;; J(u;y) is
typically ill-posed in the sense of Hadamard:

> there is no unique solution u*, or
» u* does not depend continuously on y,

and ill-conditioned:

» small changes in y can lead to large changes in u*.

o Note that the forward problem of finding G(u) given u is typically
well-posed.
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What are inverse problems?

Ill-posedness: non-unique solutions

o Consider the problem U =R, Y =R and G(u) = u.
e We observe iy = u? + 7.

e For y > 0, the data misfit functional J(u;y) = (y — u?)? has two
minimisers u* = £,/y.
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What are inverse problems?

Ill-conditioning: Linear example

o Consider the linear case where G = G € R%>du_

e If dy > d, (overdetermined system) and G is of full rank, then
ly — Gul|3 has a unique minimiser, given by the solution of the
normal equations

GTGu* = GTy.
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What are inverse problems?

Ill-conditioning: Linear example

o Consider the linear case where G = G € R%>du_

e If d, > d, (overdetermined system) and G is of full rank, then
ly — Gu||3 has a unique minimiser, given by the solution of the
normal equations

GTGu* = GTy.

o If the matrix GTG is ill-conditioned, then small changes in y result in
large changes in w*: C''C/(u" + Au') = Gy + Ay)

|Aur]]

[Ju*|l
where cond(GTG) = [|GTG||[(GTG)Y.

IGT Ayl

S Cond(GTG) W,

e GT@G is ill-conditioned in many examples, e.g. the Vandermonde-type
matrices occuring in polynomial regression.
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Bayesian approach
Bayesian inference [Kaipio, Somersalo '06]

@ We apply a Bayesian statistical approach to solve inverse problems.
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Bayesian approach
Bayesian inference [Kaipio, Somersalo '06]

@ We apply a Bayesian statistical approach to solve inverse problems.

@ We choose a prior distribution 1 on u with pdf mp(u) on U.
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Bayesian approach
Bayesian inference [Kaipio, Somersalo '06]

@ We apply a Bayesian statistical approach to solve inverse problems.
@ We choose a prior distribution 1 on u with pdf mp(u) on U.

@ Under the measurement model y = G(u) + 1 with 7 ~ N(0,~%I), we
have y|u ~ N(G(u),~7?I), and the likelihood of the data v is

1 1
Livl) = =gz oxp (= 5.5l ~ GwIR)

In general, L(y|lu) = exp(—®(y;u)) for some potential ®.
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Bayesian approach
Bayesian inference [Kaipio, Somersalo '06]

@ We apply a Bayesian statistical approach to solve inverse problems.
@ We choose a prior distribution 19 on u with pdf mg(u) on U.

@ Under the measurement model y = G(u) + 1 with 7 ~ N(0,~%I), we
have y|u ~ N(G(u),~I), and the likelihood of the data 7 is

1 1
Livl) = =gz oxp (= 5.5l ~ GwIR)

In general, L(y|lu) = exp(—®(y;u)) for some potential ®.

e Using Bayes' Theorem, we obtain the posterior distribution p¥ on uly
with pdf 7¥(u), given by

m(uly) =: 7Y (u) = [ (yy||1;) WO(ngu'

o ¥(u) is large where ||y — G(u)||3 is small and mo(u) is large.
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Bayesian approach
Advantages of the Bayesian approach

@ The solution to the Bayesian inverse problem is the posterior pdf
7¥(u). This allows for uncertainty quantification in the inferred
parameter.
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Bayesian approach
Advantages of the Bayesian approach

@ The solution to the Bayesian inverse problem is the posterior pdf
7¥(u). This allows for uncertainty quantification in the inferred
parameter.

@ In the Bayesian framework, the inverse problem is well-posed:

» there exists a unique posterior distribution for all 3 € R%.

If there are multiple minimisers of ||y — G(u)]
distribution has multiple modes.

» the posterior distribution ¥ depends continuously on y: if L(y|u) is
locally Lipschitz in y, then

2, then the posterior

dry (¥, %) < Clly — ¢l
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Bayesian approach
Challenges in the Bayesian approach

@ The posterior distribution is typically not known in closed form
(notable exception: the linear Gaussian case).

@ Advanced sampling methods such as Markov chain Monte Carlo
methods are required for sampling from the posterior, e.g. for
computing the posterior mean E[ul|y].
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Bayesian approach

Example: linear, Gaussian, one dimensional
Consider the following example (dy = d, = 1): v = gu + 1

@ Forward model: g € R,

@ Prior: u ~ N(0,0’%) with pdf mp(u) = exp(— |u ”2),
\/ O

o Noise: 7 ~ N'(0,72) with likelihood L(y|u ) xp(—”y;j;"z).
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Bayesian approach

Example: linear, Gaussian, one dimensional
Consider the following example (dy = d, = 1): v = gu + 1
@ Forward model: g € R,
e Prior: u ~ N(0,03) with pdf mo(u) =

\/— exp(— |”02),

o Noise: 7 ~ N'(0,72) with likelihood L(y|u) = Xp(—”y;jz“”z).

Using Bayes’ formula gives

m(uly) =: 7Y (u) = T L (yy||1;) 7rO(Z))du

2

009 2 i
= uly ~ N(Ly, 0'0—>.
7% + o3 g? 7% + 03 g?

[\

The posterior has a shifted mean and smaller variance.
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By assumption, we have the followina prior density and
likelihood:

1
mo(u) o< exp ( — ?uz)7
0

L(y|u) o< exp(—#(y — gu)?) .



By assumption, we have the followina prior density and
likelihood:

1
mo(u) o< exp ( — ?uz)7
0

L(y|u) o< exp(— 2; (v —gu)’).

Thus, By Bayes’ formula, the posterior is

121

7 (u) o exp (— 202 2772()’ — gu)®)
_ Ll ot
_exp( 5((—2+?)u —2?u+?)>

= exp(<f %(au — 2bu+c)),

with



We want to find constants m, K, o, such that
' (u) x exp(—i(u — m)? + K)
202 '

By completing the square, we ortain

au’ —2bu+c = a(u2—29u+£)
a a
b
B 2_27 W 122 e
S R )
b b?



We want to find constants m, K, o, such that
' (u) x exp(—i(u — m)? + K)
202 '

By completing the square, we ortain

b
au’ —2bu+c = a(u2—27u+£)
a a
b
p) p) p)
[ —2— _— —_— p— -
a(w? —22u+ (22— (2P +5)
b, b?
= a(u—f) “V‘C—;,
and thus,
1 2.7 b 2
e 907 _ D 908

— ﬁ’ i = )
E] 'erg a 7+crg

and for the constant K, which does not depend on u, we

OoRtain ) A i
b
K cn L s )~
a 7?2  y*+y?%g20?



Bayesian approach

Example: linear, Gaussian, one dimensional
Consider the following example (d, = d,, = 1)

@ Forward model: g € R,

e Prior: u ~ N(0,08) with pdf m(u) = 57 OXP(— 207 ),
0
2
L exp( Lol

e Noise: n ~ N(0,72) giving likelihood L(y|u) = Jor s
™y

Using Bayes’ formula gives
L(y|u) mo(u)

(uly) = 7) = e

2 2
%09 27
iu!yw/\/’(*y, —)
V2 + 059" 092 + agg?
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Bayesian approach

Example: linear, Gaussian

Generalising the previous example to multiple dimensions:
@ Forward model: G € Rduxdy
@ Prior: u ~ N(mqg, Cy),
e Noise: n ~ N(0,T).

Using Bayes' formula gives u|y ~ N (m, C), with

m = mo + CoGT (GCHoGT +T) " (y — Gmy),
C = Cy— CoGT(GCyGT +T)1GCy.
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Markov chain Monte Carlo methods

Motivation

@ In many applications, one is interested in computing the expected
value of a quantity of interest ¢ under the target distribution 7:

El¢] = | oé(u)m(u)du.

Rdu

@ The integral is typically intractable, and can be approximated using a
sampling method:

1 Y .
Elg] ~ - > ¢(ul),
=1

where u(9) ~ m, foralll1 <7< N.
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Markov chain Monte Carlo methods
Sampling methods

o Generating samples u() ~ 7 is often difficult since:

» 7 is not known in closed form, eg only up to a normalisation constant.
= not possible to generate independent (i.i.d.) samples from 7

» the state variable u € R% is high dimensional.

» 7 can concentrate on low-dimensional manifolds.
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Markov chain Monte Carlo methods
Markov chain[Robert, Casella '99]

A Markov chain Monte Carlo (MCMC) estimator of E[¢] is of the form

%CMC N Z ¢

where {u()19° is a Markov chain.

Definition (Markov chain)
The family of random variables {u(?}2° is called a Markov chain if
Pr[u(i) = 83 | uM =z, ey uwl= = :ci_l] = Pr[u(i) =¥ | uwlD =g, 4 ],

foralli>2and z1,...,2; € R,
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Markov chain Monte Carlo methods
Markov chain[Robert, Casella '99]

A Markov chain Monte Carlo (MCMC) estimator of E[¢] is of the form
| X
SMCMC . L (i)
N T N ;¢(u )a
where {u()19° is a Markov chain.

Definition (Markov chain)

The family of random variables {u(?}2° is called a Markov chain if

Pr[u(i) =% | uM) = T1,..., w1 = :ci_l] = Pr[u(i) =X | w1 = Ti—1 ],

foralli>2and z1,...,2; € R,

We want the distribution of each u(?) to be (close to) 7.
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Markov chain Monte Carlo methods

Why Markov chains?

@ Practical advantage:

» Allows for sequential construction: construct u(+1) from u(?).

@ Theoretical advantages:

» Stationary distributions: we can construct {u(}2°, s.t. u) ~ 7 as
i — oo for any u)) € R

» Ergodic average: we can construct {u(9)}°, st.
5N () - El¢] as N — oo.
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Markov chain Monte Carlo methods
Metropolis Hastings Algorithm [Robert, Casella '99]

A particular example is the Metropolis Hastings (MH-MCMC) estimator,
which uses the following algorithm to construct {u(z)}g‘il:

ALGORITHM 1. (Metropolis Hastings)
@ Choose u") with 7(u(M)) > 0.

o At state u(?), sample a proposal u’ from density g(u/ | u(?).
@ Accept sample u’ with probability

e , m(u) q(u® | )
a(u | u®) = min <1, ) g (| u(i)))’

i.e. ul™ =4/ with probability a(u/ | u"); otherwise stay at
a+D) — gy 0)
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Markov chain Monte Carlo methods
Metropolis Hastings Algorithm [Robert, Casella '99]

A particular example is the Metropolis Hastings (MH-MCMC) estimator,

which uses the following algorithm to construct {u(i)}g‘il:
ALGORITHM 1. (Metropolis Hastings)
@ Choose u") with 7(u(M)) > 0.
o At state u(?), sample a proposal u’ from density g(u/ | u(?).
@ Accept sample u/ with probability
!/ 7 !/
o) = min (1, ZUGILE ),

i.e. w1 =4/ with probability a/(u’|u); otherwise stay at
a+D) — gy 0)

@ The proposal density ¢ is chosen to be easy to sample from.
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Markov chain Monte Carlo methods

Metropolis Hastings Algorithm [Robert, Casella '99]

A particular example is the Metropolis Hastings (MH-MCMC) estimator,
which uses the following algorithm to construct {u(i)}g‘il:

ALGORITHM 1. (Metropolis Hastings)
@ Choose u") with 7(u(M)) > 0.
o At state u(?), sample a proposal u’ from density g(u/ | u(?).
@ Accept sample u’ with probability
(ONPY;
oy () ) g )
ot 1%) =min (1, 2 oy )

i.e. w1 =4/ with probability a/(u’|u); otherwise stay at
a+D) — gy 0)

@ The proposal density ¢ is chosen to be easy to sample from.

@ The accept/reject step is added in order to obtain samples from .
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Markov chain Monte Carlo methods

Metropolis Hastings Algorithm [Robert, Casella '99]

A particular example is the Metropolis Hastings (MH-MCMC) estimator,
which uses the following algorithm to construct {u(i)}g‘il:

ALGORITHM 1. (Metropolis Hastings)
@ Choose u") with 7(u(M)) > 0.
o At state u(?), sample a proposal u’ from density g(u/ | u(?).
@ Accept sample u’ with probability
(ONPY;
oy () ) g )
ot 1%) =min (1, 2 oy )

i.e. w1 =4/ with probability a/(u’|u); otherwise stay at
a+D) — gy 0)

@ The proposal density ¢ is chosen to be easy to sample from.
@ The accept/reject step is added in order to obtain samples from .

@ Knowledge of the normalising constant Z of 7 is not required.
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Markov chain Monte Carlo methods

Properties of acceptance probability «

Given current state u(?), we accept proposed state u’ with probability

e , m(u') g(u? | ')
o' |u™) = min (1, ) g(a | u(i)))'
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Markov chain Monte Carlo methods

Properties of acceptance probability «

Given current state u("), we accept proposed state u’ with probability

e , m(u') g(u? | ')
a(u |u®) = min (1, ) g(a | u(i))>‘

The proposal ' has a high probability of acceptance when

m(u')
m(u®))

samples from regions of high target probability,

is large = v’ has a high target probability = we choose

q(u® | u)
q(u’ | u®)
from .

is large = there is a high probability of moving back to u(?)
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Markov chain Monte Carlo methods

Central Limit Theorem [Robert, Casella '99]

Define an auxiliary chain {ﬂ(i) <. generated by Algorithm 1 with
@M ~ 7. Define the asymptotic variance

o = VIp(aV)] +2 3 Covlg(aM), ¢(a)).
=2
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Markov chain Monte Carlo methods

Central Limit Theorem [Robert, Casella '99]

Define an auxiliary chain {ﬂ(i) <. generated by Algorithm 1 with
@M ~ 7. Define the asymptotic variance

o = VIp(aV)] +2 3 Covlg(aM), ¢(a)).
=2

Theorem (Central Limit Theorem)

Suppose aq% < oo, Prla =1] <1 and q(u|u*) > 0 for all u,u* s.t.
mw(u), 7(u*) > 0. Then, as N — oo, we have

N
VNoy? (% > ) — E[¢]> 2, N(0,1).
=1

2 —
- 1 N ON
The estimator + > ;0 ¢(u'”) is “
asymptotically normally distributed, with t
2
mean E[¢] and variance Uﬁ. o
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Markov chain Monte Carlo methods

Choice of proposal density

The proposal density is chosen to balance

@ accuracy:

» We want to make the asymptotic variance ai small.
» This requires reducing the correlation between samples.

@ cost:

» Sampling from the proposal ¢(- |u(?)) has varying cost depending the
particular choice.

» This could involve computing the gradient Vlog 7(u(")) and/or higher
order derivatives.
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Markov chain Monte Carlo methods

Independent proposal

The independence sampler chooses a proposal distribution independent of
the current state u®: ¢(-|u) = v(.).

@ This either works very well or
very poorly... —target

- - proposal v,

- - proposal v,

@ It can work well e.g. in the 06
Bayesian inference problem,
with v = g, if the prior my and
the posterior 7 are sufficiently

'
[
[
[
[
[
[
1 '
1 '
' |
' '
1 '
' !
[ '
I '
' '

close.
0.2
@ Note that we do not get 01 [
independent samples {u()}9° N =
-5 0 5

due to accept/reject step.
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Markov chain Monte Carlo methods

Independent proposal

The independence sampler chooses a proposal distribution independent of
the current state u®: ¢(-|u) = v(.).

@ This either works very well or
very poorly... —target

- - proposal v,

- - proposal v,

@ It can work well e.g. in the 06
Bayesian inference problem,
with v = g, if the prior my and
the posterior 7 are sufficiently
close.

'
[
[
[
[
[
[
1 '
1 '
' |
' '
1 '
' !
[ '
I '
' '

@ Note that we do not get 04
independent samples {u()}22, obe-
due to accept/reject step. N

The independence sampler does not use the current state u(?)...
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Markov chain Monte Carlo methods

Random walk proposal [Roberts et al, '97]

The random walk proposal is given by ¢(u' |u(?) = N (u®, 821), for some
B >0,ie.

u/ = u(z) -+ 55“ where fz ~ N(07I)7 /8 > 07

. . 1.4
@ Here, 3 is a step size that needs R .
to be tuned: 12 " * ul
’ ' - = /3 small
» if § is too small, you don't ot - - flarge
explore the state space. 0.8 D
1 1
» if J is too large, you reject 0.6 !
too often. 0.4
> both scenarios lead to large 02
asymptotic variance 7. b o
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Markov chain Monte Carlo methods

Random walk proposal [Roberts et al, '97]

The random walk proposal is given by ¢(u' |u(?) = N (u®, 821), for some
B >0,ie.

o = u® + BE;, where &~ N(O,I), g >0,

@ Here, 3 is a step size that needs R .
to be tuned: 12 " * uf
1 ' - = [ small
» if § is too small, you don't i - - Blarge
explore the state space. 0.8 D
L |
» if J is too large, you reject 0.6 !
too often. 04
> both scenarios lead to large 02

asymptotic variance 7. b

@ A general rule of thumb is to tune 3 such that the average acceptance
probability is a == 0.234, to achieve small asymptotic variance.
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Markov chain Monte Carlo methods

Computational challenges

Computational challenges in complex models:

@ Challenge in high dimensions u: for any 3, the average acceptance
rate « — 0 as d, — 00. = 0 — o0 as d, — o0

; NRRTIIONT —5zly=G(W)l3
@ Challenge for computationally expensive likelihoods e 2~ :

this needs to be evaluated at each iteration of the Metropolis
Hastings algorithm. (e.g. PDE-based or big data applications)

These will be addressed in the next lecture!
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