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General overview of the course

This course will provide an introduction to the Bayesian approach to
inverse problems, including introduction of the Bayesian formulation,
computational challenges and related algorithms.

A rough outline is as follows:

Lecture 1: Introduction

Lecture 2: Algorithms in finite dimensions

Lecture 3: Algorithms in infinite dimensions

Lecture 4: Exercises (Jupyter notebook)
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Outline of today’s lecture

1 What are inverse problems?

2 Bayesian approach

3 Markov chain Monte Carlo methods
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What are inverse problems?
Definition and applications

An inverse problem is concerned with determining causal factors from
observed data.

In mathematical terms, we want to determine model inputs based on
(partial and noisy) observations of model outputs.

Inverse problems appear in many different areas, including:

I computational imaging: recovering the true image from a blurred and
noisy observation;

I geophysics: inferring the conductivity of the subsurface from
measurements at wells;

I machine learning: building an underlying model from observed data
points,

I non-destructive testing, astrophysics, medicine, weather prediction, . . .

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 4 / 31



What are inverse problems?
Definition and applications

An inverse problem is concerned with determining causal factors from
observed data.

In mathematical terms, we want to determine model inputs based on
(partial and noisy) observations of model outputs.

Inverse problems appear in many different areas, including:

I computational imaging: recovering the true image from a blurred and
noisy observation;

I geophysics: inferring the conductivity of the subsurface from
measurements at wells;

I machine learning: building an underlying model from observed data
points,

I non-destructive testing, astrophysics, medicine, weather prediction, . . .

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 4 / 31



What are inverse problems?
Mathematical formulation

Suppose we are given a mathematical model of a process, represented
by a (linear or non-linear) map G.

We are interested in the following inverse problem: given
observational data y ∈ Y , determine unknown u ∈ U such that

y = G(u) + η.

Here, η represents observational noise, due to for example
measurement error (inaccurate instruments).
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What are inverse problems?
Example 1: Imaging

Goal: reconstruct an image u given a noisy, partial observation y

Unknown u ∈ Rdu : the pixel values of the image

Map G: The map G = G ∈ Rdy×du is linear in many imaging
problems, where G incorporates mechanisms such as

I blurring (→ averaging over a neighbourhood of pixels)
I Fourier transform (→ observations in frequency domain)
I a mask (→ partial observations)

Observations: y = Gu+ η ∈ Rdy .

Left: |y| Right: u∗
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What are inverse problems?
Example 1: Imaging

Particular example: Deblurring (without noise).

The map G is defined by its action on each
pixel value:

yi =
∑

j∈N(i)

wijuj ,

where

yi is the ith pixel value of the blurred
image,

N(i) is neighbourhood of pixel i,

wij are weights indicating the
importance of each pixel j ∈ N(i), and

uj is the jth pixel value of the original
image.

Original

Blurred
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What are inverse problems?
Example 2: Regression

Goal: reconstruct a function f given noisy point values {f(xi)}.

Unknown u ∈ Rdu : coefficients in a basis expansion

f(x;u) =

du∑

j=1

ujφj(x),

where {φj}duj=1 are linearly independent, e.g. φj(x) = xj−1.

Map G: implicitly defined by u 7→ {f(xi;u)}dyi=1. In fact G = G is
linear, with aij = φj(xi) (Vandermonde-type matrix).

Observations: y = {f(xi;u) + ηi}dyi=1 ∈ Rdy .
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What are inverse problems?
Example 3: Porous media flow

Goal: reconstruct the hydraulic conductivity k of the subsurface given
noisy measurements of the water pressure {p(xi)}.
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Unknown u ∈ Rdu : coefficients in a basis expansion

k(x;u) = φ0(x) +

du∑

j=1

ujφj(x),

where {φj}duj=1 are linearly independent and φ0 is s.t. k is positive.

Map G: implicitly defined by u 7→ {p(xi;u)}dyi=1, where p is the
solution of

−∇ · (k(x;u)∇p(x;u)) = h(x).

(This equation comes from Darcy’s law plus conservation of mass:
conductivity k, pressure head p, sources/sinks h.)

Observations: y = {p(xi;u) + ηi}dyi=1 ∈ Rdy .

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 9 / 31



What are inverse problems?
Example 3: Porous media flow

Goal: reconstruct the hydraulic conductivity k of the subsurface given
noisy measurements of the water pressure {p(xi)}.
Unknown u ∈ Rdu : coefficients in a basis expansion

k(x;u) = φ0(x) +

du∑

j=1

ujφj(x),

where {φj}duj=1 are linearly independent and φ0 is s.t. k is positive.

Map G: implicitly defined by u 7→ {p(xi;u)}dyi=1, where p is the
solution of

−∇ · (k(x;u)∇p(x;u)) = h(x).

(This equation comes from Darcy’s law plus conservation of mass:
conductivity k, pressure head p, sources/sinks h.)

Observations: y = {p(xi;u) + ηi}dyi=1 ∈ Rdy .

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 9 / 31



What are inverse problems?
General inverse problems

We are interested in the following inverse problem: given
observational data y ∈ Y , determine unknown u ∈ U such that

y = G(u) + η.

Simply ”inverting G” is not possible, since

I we do not know the value of η, and

I typically G−1 does not exist.

(Think about the case where G is linear, i.e. G = G ∈ Rdy×du . Unless
dy = du, G−1 does not exist.)
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What are inverse problems?
Ill-posedness and ill-conditioning of inverse problems

Intuitively, we want to choose u to minimise the data misfit functional

J(u; y) := ‖y − G(u)‖22.

However, the optimisation problem u∗ := arg minu∈U J(u; y) is
typically ill-posed in the sense of Hadamard:

I there is no unique solution u∗, or

I u∗ does not depend continuously on y,

and ill-conditioned:

I small changes in y can lead to large changes in u∗.

Note that the forward problem of finding G(u) given u is typically
well-posed.
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What are inverse problems?
Ill-posedness: non-unique solutions

Consider the problem U = R, Y = R and G(u) = u2.

We observe y = u2 + η.

For y > 0, the data misfit functional J(u; y) = (y − u2)2 has two
minimisers u∗ = ±√y.
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What are inverse problems?
Ill-conditioning: Linear example

Consider the linear case where G = G ∈ Rdy×du .

If dy ≥ du (overdetermined system) and G is of full rank, then
‖y −Gu‖22 has a unique minimiser, given by the solution of the
normal equations

GTGu∗ = GTy.

If the matrix GTG is ill-conditioned, then small changes in y result in
large changes in u∗: GTG(u∗ + ∆u∗) = GT(y + ∆y)

⇒ ‖∆u
∗‖

‖u∗‖ ≤ cond(GTG)
‖GT∆y‖
‖GTy‖ ,

where cond(GTG) := ‖GTG‖‖(GTG)−1‖.

GTG is ill-conditioned in many examples, e.g. the Vandermonde-type
matrices occuring in polynomial regression.
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Bayesian approach
Bayesian inference [Kaipio, Somersalo ’06]

We apply a Bayesian statistical approach to solve inverse problems.

We choose a prior distribution µ0 on u with pdf π0(u) on U .

Under the measurement model y = G(u) + η with η ∼ N(0, γ2I), we
have y|u ∼ N(G(u), γ2I), and the likelihood of the data y is

L(y|u) =
1√

(2πγ2)du
exp

(
− 1

2γ2
‖y − G(u)‖22

)
.

In general, L(y|u) = exp(−Φ(y;u)) for some potential Φ.

Using Bayes’ Theorem, we obtain the posterior distribution µy on u|y
with pdf πy(u), given by

π(u|y) =: πy(u) =
L(y|u) π0(u)∫

U L(y|u)π0(u)du
.

πy(u) is large where ‖y − G(u)‖22 is small and π0(u) is large.
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Bayesian approach
Advantages of the Bayesian approach

The solution to the Bayesian inverse problem is the posterior pdf
πy(u). This allows for uncertainty quantification in the inferred
parameter.

In the Bayesian framework, the inverse problem is well-posed:

I there exists a unique posterior distribution for all y ∈ Rdy .

If there are multiple minimisers of ‖y − G(u)‖22, then the posterior
distribution has multiple modes.

I the posterior distribution πy depends continuously on y: if L(y|u) is
locally Lipschitz in y, then

dTV(πy, πy
′
) ≤ C‖y − y′‖2.
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Bayesian approach
Challenges in the Bayesian approach

The posterior distribution is typically not known in closed form
(notable exception: the linear Gaussian case).

Advanced sampling methods such as Markov chain Monte Carlo
methods are required for sampling from the posterior, e.g. for
computing the posterior mean E[u|y].
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Bayesian approach
Example: linear, Gaussian, one dimensional

Consider the following example (dy = du = 1): y = gu+ η

Forward model: g ∈ R,

Prior: u ∼ N(0, σ20) with pdf π0(u) = 1√
2πσ2

0

exp(−‖u‖2
2σ2

0
),

Noise: η ∼ N (0, γ2) with likelihood L(y|u) = 1√
2πγ2

exp(−‖y−gu‖2
2γ2

).

Using Bayes’ formula gives

π(u|y) =: πy(u) =
L(y|u) π0(u)∫

R L(y|u)π0(u)du

⇒ u|y ∼ N
( σ20g

γ2 + σ20g
2
y, σ20

γ2

γ2 + σ20g
2

)
.

The posterior has a shifted mean and smaller variance.
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By assumption, we have the following prior density and
likelihood:

π0(u) ∝ exp
(
− 1

2σ2
0
u2),

L(y |u) ∝ exp(− 1
2γ2 (y − gu)2) .

Thus, by Bayes’ formula, the posterior is

πy (u) ∝ exp
(
− 1

2σ2
0
u2 − 1

2γ2 (y − gu)2
)

= exp
(
− 1

2

(( 1
σ2

0
+

g2

γ2

)
u2 − 2

gy

γ2 u +
y2

γ2

))

=: exp(
(
− 1

2
(
au2 − 2bu + c

))
,

with
a =

1
σ2

0
+

g2

γ2 , b =
gy

γ2 , c =
y2

γ2 ,
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We want to find constants m,K , σ, such that

πy (u) ∝ exp(− 1
2σ2 (u −m)2 + K ) .

By completing the square, we obtain

au2 − 2bu + c = a(u2 − 2
b

a
u +

c

a
)

= a(u2 − 2
b

a
u + (

b

a
)2 − (

b

a
)2 +

c

a
)

= a(u − b

a
)2 + c − b2

a
,

and thus,

σ2 =
1
a
=

σ2
0γ

2

γ2 + g2σ2
0
, m =

b

a
=

σ2
0g

γ2 + σ2
0g

2 y

and for the constant K , which does not depend on u, we
obtain

K = c − b2

a
=

y2

γ2 −
σ2

0g
2y2

y4 + y2g2σ2 .
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Bayesian approach
Example: linear, Gaussian, one dimensional

Consider the following example (dy = du = 1):

Forward model: g ∈ R,

Prior: u ∼ N(0, σ20) with pdf π0(u) = 1√
2πσ2

0

exp(−‖u‖2
2σ2

0
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2γ2
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Bayesian approach
Example: linear, Gaussian

Generalising the previous example to multiple dimensions:

Forward model: G ∈ Rdu×dy ,

Prior: u ∼ N (m0, C0),

Noise: η ∼ N (0,Γ).

Using Bayes’ formula gives u|y ∼ N (m,C), with

m = m0 + C0G
T (GC0G

T + Γ)−1(y −Gm0),

C = C0 − C0G
T (GC0G

T + Γ)−1GC0.
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Markov chain Monte Carlo methods
Motivation

In many applications, one is interested in computing the expected
value of a quantity of interest φ under the target distribution π:

E[φ] =

∫

Rdu
φ(u)π(u) du.

The integral is typically intractable, and can be approximated using a
sampling method:

E[φ] ≈ 1

N

N∑

i=1

φ(u(i)),

where u(i) ∼ π, for all 1 ≤ i ≤ N .
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Markov chain Monte Carlo methods
Sampling methods

Generating samples u(i) ∼ π is often difficult since:

I π is not known in closed form, eg only up to a normalisation constant.
⇒ not possible to generate independent (i.i.d.) samples from π

I the state variable u ∈ Rdu is high dimensional.

I π can concentrate on low-dimensional manifolds.
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Markov chain Monte Carlo methods
Markov chain[Robert, Casella ’99]

A Markov chain Monte Carlo (MCMC) estimator of E[φ] is of the form

ÊMCMC
N :=

1

N

N∑

i=1

φ(u(i)),

where {u(i)}∞i=1 is a Markov chain.

Definition (Markov chain)

The family of random variables {u(i)}∞i=1 is called a Markov chain if

Pr
[
u(i) = xi

∣∣u(1) = x1 , . . . , u
(i−1) = xi−1

]
= Pr

[
u(i) = xi

∣∣u(i−1) = xi−1
]
,

for all i ≥ 2 and x1, . . . , xi ∈ Rdu .

We want the distribution of each u(i) to be (close to) π.
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Markov chain Monte Carlo methods

Why Markov chains?

Practical advantage:

I Allows for sequential construction: construct u(i+1) from u(i).

Theoretical advantages:

I Stationary distributions: we can construct {u(i)}∞i=1 s.t. u(i) ∼ π as
i→∞ for any u(1) ∈ Rdu

I Ergodic average: we can construct {u(i)}∞i=1 s.t.
1
N

∑N
i=1 φ(u(i))→ E[φ] as N →∞.
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Markov chain Monte Carlo methods
Metropolis Hastings Algorithm [Robert, Casella ’99]

A particular example is the Metropolis Hastings (MH-MCMC) estimator,
which uses the following algorithm to construct {u(i)}∞i=1:

ALGORITHM 1. (Metropolis Hastings)

Choose u(1) with π(u(1)) > 0.

At state u(i), sample a proposal u′ from density q(u′ |u(i)).

Accept sample u′ with probability

α(u′ |u(i)) = min

(
1,

π(u′) q(u(i) |u′)
π(u(i)) q(u′ |u(i))

)
,

i.e. u(i+1) = u′ with probability α(u′ |u(i)); otherwise stay at
u(i+1) = u(i).

The proposal density q is chosen to be easy to sample from.

The accept/reject step is added in order to obtain samples from π.

Knowledge of the normalising constant Z of π is not required.
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Markov chain Monte Carlo methods
Properties of acceptance probability α

Given current state u(i), we accept proposed state u′ with probability

α(u′ |u(i)) = min

(
1,

π(u′) q(u(i) |u′)
π(u(i)) q(u′ |u(i))

)
.

The proposal u′ has a high probability of acceptance when

π(u′)
π(u(i))

is large ⇒ u′ has a high target probability ⇒ we choose

samples from regions of high target probability,

q(u(i) |u′)
q(u′ |u(i)) is large ⇒ there is a high probability of moving back to u(i)

from u′.
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Markov chain Monte Carlo methods
Central Limit Theorem [Robert, Casella ’99]

Define an auxiliary chain {ũ(i)}∞i=1, generated by Algorithm 1 with
ũ(1) ∼ π. Define the asymptotic variance

σ2φ := V[φ(ũ(1))] + 2

∞∑

i=2

Cov[φ(ũ(1)), φ(ũ(i))].

Theorem (Central Limit Theorem)

Suppose σ2φ <∞, Pr[α = 1] < 1 and q(u |u∗) > 0 for all u, u∗ s.t.
π(u), π(u∗) > 0. Then, as N →∞, we have

√
Nσ−2φ

(
1

N

N∑

i=1

φ(u(i))− E[φ]

)
D−→ N (0, 1).

The estimator 1
N

∑N
i=1 φ(u(i)) is

asymptotically normally distributed, with

mean E[φ] and variance
σ2
φ

N .
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ũ(1) ∼ π. Define the asymptotic variance

σ2φ := V[φ(ũ(1))] + 2
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Markov chain Monte Carlo methods
Choice of proposal density

The proposal density is chosen to balance

accuracy:

I We want to make the asymptotic variance σ2
φ small.

I This requires reducing the correlation between samples.

cost:

I Sampling from the proposal q(· |u(i)) has varying cost depending the
particular choice.

I This could involve computing the gradient ∇ log π(u(i)) and/or higher
order derivatives.
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Markov chain Monte Carlo methods
Independent proposal

The independence sampler chooses a proposal distribution independent of
the current state u(i): q(· |u(i)) = ν(·).

This either works very well or
very poorly...

It can work well e.g. in the
Bayesian inference problem,
with ν = π0, if the prior π0 and
the posterior π are sufficiently
close.

Note that we do not get
independent samples {u(i)}∞i=1

due to accept/reject step.

The independence sampler does not use the current state u(i)...
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Markov chain Monte Carlo methods
Random walk proposal [Roberts et al, ’97]

The random walk proposal is given by q(u′ |u(i)) = N (u(i), β2I), for some
β > 0, i.e.

u′ = u(i) + βξi, where ξi ∼ N (0, I), β > 0,

Here, β is a step size that needs
to be tuned:

I if β is too small, you don’t
explore the state space.

I if β is too large, you reject
too often.

I both scenarios lead to large
asymptotic variance σ2

φ.

A general rule of thumb is to tune β such that the average acceptance
probability is α ≈ 0.234, to achieve small asymptotic variance.
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Markov chain Monte Carlo methods
Computational challenges

Computational challenges in complex models:

Challenge in high dimensions u: for any β, the average acceptance
rate α→ 0 as du →∞. ⇒ σ2φ →∞ as du →∞

Challenge for computationally expensive likelihoods e
− 1

2γ2
‖y−G(u)‖22 :

this needs to be evaluated at each iteration of the Metropolis
Hastings algorithm. (e.g. PDE-based or big data applications)

These will be addressed in the next lecture!
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