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Brief recap
Bayesian approach to inverse problems [Kaipio, Somersalo ’04] [Stuart ’10]

We are interested in the following inverse problem: given observational
data y ∈ Rdy , determine unknown parameter u ∈ Rdu such that

y = G(u) + η,

where η ∼ N (0, γ2I) represents observational noise.

In the Bayesian approach, the solution to the inverse problem is the
posterior density πy on Rdu , given by

πy(u)︸ ︷︷ ︸
p(u|y)

=
1

Z︸︷︷︸
1/p(y)

p(y|u)︷ ︸︸ ︷
exp

(
− Φ(u; y)

)
π0(u)︸ ︷︷ ︸
p(u)

,

where Z =
∫
Rdu exp

(
− Φ(u; y)

)
π0(u)du = Eπ0

(
exp

(
− Φ(·; y)

))
and Φ(u; y) = 1

2γ2
‖y − G(u)‖22.
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Brief recap
Metropolis Hastings algorithm [Robert, Casella ’99]

We are interested in computing the posterior mean Eπy [u], or more
generally a quantity of interest Eπy [φ(u)].

We can use Metropolis Hastings: Eπy [φ(u)] ≈ 1
N

∑N
i=1 φ(u(i)).

ALGORITHM 1. (Metropolis Hastings)

Choose u(1) with πy(u(1)) > 0.

At state u(i), sample a proposal u′ from density q(u′ |u(i)).

Accept sample u′ with probability

α(u′ |u(i)) = min

(
1,

πy(u′) q(u(i) |u′)
πy(u(i)) q(u′ |u(i))

)
,

i.e. u(i+1) = u′ with probability α(u′ |u(i)); otherwise stay at
u(i+1) = u(i).

A central limit theorem gives E[
∑N

i=1 φ(u(i))] ≈ Eπy [φ(u)] and

V[
∑N

i=1 φ(u(i))] ≈ σ2
φ

N for large N .
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Brief recap
Random walk proposal [Roberts et al, ’97]

The random walk proposal is given by q(u′ |u(i)) = N (u(i), β2I), for some
β > 0, i.e.

u′ = u(i) + βξi, where ξi ∼ N (0, I), β > 0,

Here, β is a step size that needs
to be tuned:

I if β is too small, you don’t
explore the state space.

I if β is too large, you reject
too often.

I both scenarios lead to large
asymptotic variance σ2

φ.

A general rule of thumb is to tune β such that the average acceptance
probability is α ≈ 0.234, to achieve small asymptotic variance.
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Markov chain Monte Carlo methods
Challenge 1: High dimensional u

In many modern applications, the unknown u is very high-dimensional:

In imaging applications, the dimension of u is the number of pixels.
For a 640× 480 image, this gives u ∈ R307200.

In PDE applications, the parameters u are often used to model the
diffusion coefficient k(x).

I When using a finite element method with step size ∆x to solve the
PDE, k(x) if often modelled as piece-wise constant on each element.
In two spatial dimensions, we have du = (∆x)−2= 2562 = 65536.

I k(x) often has low spatial regularity and large variations, which means
that a large number of terms are required in Fourier-type expansions.
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Markov chain Monte Carlo methods
Challenge 1: High dimensional u [Cotter et al, ’13]

Challenge in high dimensions: for any β, the average acceptance rate
α→ 0 as d→∞. ⇒ σ2

φ →∞ as d→∞

Example in discretised PDE, with du = (∆x)−2:
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Markov chain Monte Carlo methods
Pre-conditioned Crank-Nicolson (pCN) [Cotter et al ’13]

The pre-conditioned Crank-Nicolson (pCN) proposal is well-defined in
the infinite-dimensional setting du. ⇒ σ2

φ independent of du

The specific form of the pCN proposal depends on the prior π0. If π0

is N (0, C0), then q(u′ |u(i)) is defined by

u′ =
√

1− β2 u(i) + βξi, where ξi ∼ N (0, C0), β ∈ [0, 1].

β is a step size parameter that needs to be tuned.

The same heuristic to tune β
such that the average
acceptance probability is
α ≈ 0.234 is often used.
β ∼ 1
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Markov chain Monte Carlo methods
Pre-conditioned Crank-Nicolson (pCN) [Cotter et al ’13]

The pCN proposal is π0-reversible, i.e.

π0(u(i)) q(u′ |u(i)) = π0(u′) q(u(i) |u′).

The acceptance probability then becomes

α(u′|u(i)) = min

(
1,

L(y|u′)π0(u′) q(u(i) |u′)
L(y|u(i))π0(u(i)) q(u′ |u(i))

)
,

which depends on u′ only through its likelihood L(y|u′).

The prior density π0(u) ∝ e−uTC
−1
0 u becomes ill-defined in infinite

dimensions.
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Markov chain Monte Carlo methods
How to incorporate gradient information?

The proposals we have seen so far are agnostic about which parts of
state space are more probable.

Ideally we would like proposals that take this into account (⇒ make it
more probable to move to areas where π is large).

Connecting to optimisation, a possible way to do this is to use
gradient information and propose the next move in the following way

u′ = u(i) + β∇π(u(i))

1 This is deterministic move (we are losing randomness, and the ability
to explore the state space, as we would converge to a local maximum).

2 How can we do this properly?

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 10 / 37



Markov chain Monte Carlo methods
How to incorporate gradient information?

The proposals we have seen so far are agnostic about which parts of
state space are more probable.

Ideally we would like proposals that take this into account (⇒ make it
more probable to move to areas where π is large).

Connecting to optimisation, a possible way to do this is to use
gradient information and propose the next move in the following way

u′ = u(i) + β∇π(u(i))

1 This is deterministic move (we are losing randomness, and the ability
to explore the state space, as we would converge to a local maximum).

2 How can we do this properly?

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 10 / 37



Markov chain Monte Carlo methods
Metropolis adjusted Langevin algorithm (MALA) [Pillai, Stuart, Thiery ’12]

MALA: q(u′|u(i)) = N (u(i) + β∇ log πy(u(i)), 2βI), for some β > 0,
i.e.

u′ = u(i) + β∇ log πy(u(i)) +
√

2βξi, where ξi ∼ N (0, I)

For optimal efficiency, the step size β should be tuned to obtain an

average acceptance rate of α ≈ 0.574. ⇒ β ∼ d−1/3
u
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Markov chain Monte Carlo methods
Metropolis adjusted Langevin algorithm (MALA)

MALA: u′ = u(i) + β∇ log πy(u(i)) +
√

2βξi, with ξi ∼ N (0, I).

Note that this is one Euler-Maruyama step of the Langevin SDE

dX = ∇ log πy(X)dt+
√

2dW

Xn+1= Xn + ∆t∇ log π(Xn) +
√

2∆tξn

The stationary distribution of the Langevin SDE is πy.

I If u(i) ∼ πy and the Euler-Maruyama method is exact, then u′ ∼ πy.

See e.g. [Girolami, Calderhead ’11] and [Cui, Law, Marzouk ’16] for
further work on including second order information.

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 12 / 37



Markov chain Monte Carlo methods
Metropolis adjusted Langevin algorithm (MALA)

MALA: u′ = u(i) + β∇ log πy(u(i)) +
√

2βξi, with ξi ∼ N (0, I).

Note that this is one Euler-Maruyama step of the Langevin SDE

dX = ∇ log πy(X)dt+
√

2dW

Xn+1= Xn + ∆t∇ log π(Xn) +
√

2∆tξn

The stationary distribution of the Langevin SDE is πy.

I If u(i) ∼ πy and the Euler-Maruyama method is exact, then u′ ∼ πy.

See e.g. [Girolami, Calderhead ’11] and [Cui, Law, Marzouk ’16] for
further work on including second order information.

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 12 / 37



Markov chain Monte Carlo methods
Non-reversible methods [Ottobre ’16]

The Markov chain {u(i)}Ni=1 produced by Metropolis-Hastings is
reversible, since it satisfies detailed balance:

πy(u(i)) q(u′ |u(i)) = πy(u′) q(u(i) |u′).

Non-reversible Markov chains have been recently shown potential to
converge to equilibrium faster, and to reduce the asymptotic variance.

A non-reversible version of Metropolis-Hastings can be constructed by
introducing a preferred direction into the proposal.
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Markov chain Monte Carlo methods
I-Jump sampler [Ma et al ’19]

ALGORITHM 2. (I-Jump)

Choose u(1) with πy(u(1)) > 0, and pick z(1) ∈ {−1, 1} uniformly.

At state u(i), if z(i) > 0:
I sample a proposal u′ from density q1(u′ |u(i)), and set

α(u′ |u(i)) = min

(
1,

πy(u′) q2(u(i) |u∗)
πy(u(i)) q1(u′ |u(i))

)
,

At state u(i), if z(i) < 0:
I sample a proposal u′ from density q2(u′ |u(i)), and set

α2(u′ |u(i)) = min

(
1,

πy(u′) q1(u(i) |u∗)
πy(u(i)) q2(u′ |u(i))

)
,

With probability α(u′|u(i)), set u(i+1) = u′; otherwise stay at
u(i+1) = u(i) and update z(i+1) = −z(i).
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Markov chain Monte Carlo methods
I-Jump sampler [Ma et al ’19]

You are free to choose q1 and q2, but a typical choice is directed
random walks. In one dimension:

q1 : u′ = u(i) + γi, γi ∼ Γ(α, β),

q2 : u′ = u(i) − γi, γi ∼ Γ(α, β),

In higher dimensions, the algorithm requires a direction vector
y(i) ∈ Rdu :

q1 : u′ = u(i) + γiy
(i), γi ∼ Γ(α, β),

q2 : u′ = u(i) − γiy(i), γi ∼ Γ(α, β),

As part of the algorithm, you may want to periodically resample y(i).
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Markov chain Monte Carlo methods
Challenge 2: Computationally expensive likelihood

In many modern applications, the likelihood e
− 1

2γ2
‖y−G(u)‖22 is very

expensive to evaluate for given u:

If the data y is high-dimensional, evaluating ‖y − G(u)‖2 becomes
time-consuming.

In PDE applications, the evaluation of G(u) requires the numerical
solution of the PDE.

The methods presented earlier help in this context since they reduce the
asymptotic variance σ2

φ, and hence the number of required samples N .

But it is further possible to reduce the cost per sample.
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Markov chain Monte Carlo methods
Surrogate transition method [Liu ’01]

The surrogate transition method uses a surrogate posterior π∗(u) to
pre-screen proposals.

ALGORITHM 3. (Surrogate Transition method)

At state u(i), sample a proposal u∗ from density q∗(u∗ |u(i)).

Set u′ = u∗ with probability

α1(u∗ |u(i)) = min

(
1,

π∗(u′) q∗(u(i) |u∗)
π∗(u(i)) q∗(u∗ |u(i))

)
,

otherwise u′ = u(i). Denote u′ ∼ q(u′|u(i)).

Accept u′ with probability

α2(u′ |u(i)) = min

(
1,

πy(u′) q(u(i) |u′)
πy(u(i)) q(u′ |u(i))

)
= min

(
1,
πy(u′)π∗(u(i))

πy(u(i))π∗(u′)

)
,

i.e. u(i+1) = u′ with probability α2(u′ |u(i)); otherwise stay at u(i+1) = u(i).

We evaluate L(y|u′) only for proposals that were accepted for π∗.
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Ratio estimators
Computing expectations

We now focus on alternative methods to Markov chain Monte Carlo.

In most cases, we do not have a closed form expression for the
posterior distribution πy, since the normalising constant Z is not
known explicitly.

However, the prior distribution is known in closed form, and
furthermore often has a simple structure (e.g. multivariate Gaussian
or independent uniform).
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Ratio estimators
Computing expectations

Using Bayes’ Theorem, we can write Eπy [φ] as

Eπy [φ] =

∫
Rdu

φ(u)πy(u) du

=

∫
Rdu

φ(u)
πy(u)

π0(u)
π0(u) du← importance sampling

=
1

Z

∫
Rdu

φ(u) exp[−Φ(u; y)]π0(u) du

=
Eπ0 [φ exp[−Φ(·; y)]]

Eπ0 [exp[−Φ(·; y)]]
.

We have rewritten the posterior expectation as a ratio of two prior
expectations.

We can now use different methods to estimate the two prior expectations,
e.g. Monte Carlo based methods.
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Ratio estimators
Standard Monte Carlo method

The standard Monte Carlo method is a sampling method.

To estimate Eπ0 [f ], for some f : Rdu → R, sampling methods use a
sample average:

Eπ0 [f ] =

∫
Rdu

f(u)π0(u)du ≈
N∑
i=1

wi f(u(i)),

where the choice of samples {u(i)}Ni=1 and weights {wi}Ni=1

determines the sampling method.

In standard Monte Carlo, wi = 1
N and {u(i)}Ni=1 is a sequence of

independent and identically distributed (i.i.d.) random variables:
{u(i)}Ni=1 are mutually independent and u(i) ∼ π0, for all 1 ≤ i ≤ N .

Since π0 is fully known and simple, i.i.d. samples from π0 can be
generated on a computer using a (pseudo-)random number generator.
For more details, see [Robert, Casella ’99], [L’Ecuyer ’11].
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Ratio estimators
Definition of Monte Carlo ratio estimator

In the Bayesian inverse problem, we want to compute

Eπy [φ] =
Eπ0 [φ exp[−Φ(·; y)]]

Eπ0 [exp[−Φ(·; y)]]
.

Using Monte Carlo, we approximate this by

Eπ0 [φ exp[−Φ(·; y)]] ≈ 1

N

N∑
i=1

φ(u(i)) exp[−Φ(u(i); y)],

Eπ0 [exp[−Φ(·; y)]] ≈ 1

N

N∑
i=1

exp[−Φ(u(i); y)],

where {u(i)}Ni=1 is an i.i.d. sequence distributed according to π0.

(It is also possible to use different samples in the two estimators.)
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Ratio estimators
Expected value and variance of Monte Carlo

Consider a general Monte Carlo estimator ÊMC
N = 1

N

∑N
i=1 f(u(i)), with

{u(i)}Ni=1 an i.i.d. sequence distributed as π0.

Lemma (Expected Value and Variance)

E[ÊMC
N ] = Eπ0 [f ], V[ÊMC

N ] =
Vπ0 [f ]

N
.

Proof: Since {u(i)}Ni=1 is an i.i.d. sequence, we have

E
[ 1

N

N∑
i=1

f(u(i))
]

=
1

N
E
[ N∑
i=1

f(u(i))
]

=
1

N

N∑
i=1

Eπ0 [f ] = Eπ0 [f ],

and

V
[ 1

N

N∑
i=1

f(u(i))
]

=
1

N2
V
[ N∑
i=1

f(u(i))
]

=
1

N2

N∑
i=1

Vπ0 [f ] =
1

N
Vπ0 [f ].
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Proof: Since {u(i)}Ni=1 is an i.i.d. sequence, we have

E
[ 1

N

N∑
i=1

f(u(i))
]

=
1

N
E
[ N∑
i=1

f(u(i))
]

=
1

N

N∑
i=1

Eπ0 [f ] = Eπ0 [f ],

and

V
[ 1

N

N∑
i=1

f(u(i))
]

=
1

N2
V
[ N∑
i=1

f(u(i))
]

=
1

N2

N∑
i=1

Vπ0 [f ] =
1

N
Vπ0 [f ].
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Ratio estimators
Mean square error of Monte Carlo

A measure of accuracy of ÊMC
N = 1

N

∑N
i=1 f(u(i)) as an estimator of

Eπ0 [f ] is given by the mean square error (MSE):

e(ÊMC
N )2 := E[(ÊMC

N − Eπ0 [f ])2].

Lemma (Mean Square Error)

e(ÊMC
N )2 =

Vπ0 [f ]

N
.

Proof: Since E[ÊMC
N ] = Eπ0 [f ] and V[ÊMC

N ] =
Vπ0 [f ]
N , this follows by

definition.

Note that the convergence rate does not depend on the dimension of u.
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Ratio estimators
Mean square error of Monte Carlo ratio estimator [Scheichl, Stuart, ALT ’17]

Recall: Eπy [φ] =
Eπ0 [φ exp[−Φ(·;y)]]

Eπ0 [exp[−Φ(·;y)]] =: QZ ≈
Q̂MC
N

ẐMC
N

.

We know how to bound the MSEs of the individual estimators Q̂MC
N

and ẐMC
N . Can we bound the MSE of Q̂MC

N /ẐMC
N ?

Rearranging the MSE and applying the triangle inequality, we have

e
(Q̂MC

N

ẐMC
N

)2
= E

[(Q
Z
−
Q̂MC
N

ẐMC
N

)2]
≤ 2

Z2

(
E
[
(Q− Q̂MC

N )2
]

+ E
[
(Q̂MC

N /ẐMC
N )2(Z − ẐMC

N )2
])
.
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Ratio estimators
Mean square error of Monte Carlo ratio estimator [Scheichl, Stuart, ALT ’17]

e
(
Q̂MC
N

ẐMC
N

)2
≤ 2

Z2

(
E
[
(Q− Q̂MC

N )2
]

+ E
[
(Q̂MC

N /ẐMC
N )2(Z − ẐMC

N )2
])

Theorem (Hölder’s Inequality)

For any random variables X,Y and p, q ∈ [1,∞], with p−1 + q−1 = 1,

E[|XY |] ≤ E[|X|p]1/p E[|Y |q]1/q.

Here, E[|X|∞]1/∞ := ess supX.

If ess sup{u(i)}Ni=1
(Q̂MC

N /ẐMC
N )2 ≤ C, for a constant C independent of N ,

then the MSE of Q̂MC
N /ẐMC

N can be bounded in terms of the individual

MSEs of Q̂MC
N and ẐMC

N .

In particular, the convergence rate in N carries over to the ratio estimator.
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N /ẐMC
N )2 ≤ C, for a constant C independent of N ,

then the MSE of Q̂MC
N /ẐMC
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Ratio estimators
Higher order methods

The convergence rate N−1 in the mean-square-error (MSE)

e(ÊMC
N )2 = E[(ÊMC

N − Eπ0 [f ])2] =
Vπ0 [f ]

N

of the MC estimator is quite slow.

One way to improve the ratio estimator is to choose the sampling
points {u(i)}Ni=1 in a more structured way than purely random to
increase the convergence rate in N .

This typically requires stronger assumptions on the function f that we
want to estimate the expected value of.

I Convergence of the MC estimator only requires Vπ0
[f ] <∞.
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Ratio estimators
Quasi-Monte Carlo methods [Dick, Pillichshammer ’10], [Leobacher, Pillichshammer ’14]

Suppose we want to compute the expected value of f(u), where u is
a random variable that is uniformly distributed on the unit cube
[0, 1]du :

E[f ] =

∫
[0,1]du

f(u)du.

More general state spaces and distributions can be dealt with using a
change of variables.

Quasi-Monte Carlo methods approximate the expected value by an
equal-weighted average:

E[f ] =

∫
[0,1]du

f(u)du ≈ 1

N

N∑
i=1

f(ui).
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Ratio estimators
Low discrepancy sequence

In Quasi-Monte Carlo (QMC) methods, we choose the set {ui}Ni=1 to
be a low discrepancy point set.

A low discrepancy set is ”evenly distributed” over [0, 1]du .

The star discrepancy D∗N of P = {ui}Ni=1 is defined as

D∗N (P) := sup
B⊆[0,1]du

B=
∏du
j=1[0,uj)

∣∣vol(B)−A(B, {ui}Ni=1)
∣∣,

where vol(B) denotes the volume of the box B and A(B, {ui}Ni=1)
denotes the proportion of {ui}Ni=1 contained in B.

Roughly speaking, the discrepancy of a point set is low if the
proportion of points inside a box B is close to the volume of B.
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Ratio estimators
Rank 1 Lattice Rules

There are many ways of constructing low discrepancy point sets. We
will focus on rank 1 lattice rules.

Given a generating vector z ∈ Rdu , the N quadrature points are

ui = frac
( i− 1

N
z
)

i = 1, . . . , N,

where ”frac” denotes the fractional part of a number.

For example: N = 21, z = [1, 13].
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Rank 1 Lattice Rules

There are many ways of constructing low discrepancy point sets. We
will focus on rank 1 lattice rules.

Given a generating vector z ∈ Rdu , the N quadrature points are

ui = frac
( i− 1

N
z
)

i = 1, . . . , N,

where ”frac” denotes the fractional part of a number.

For example: N = 21, z = [1, 13]. N = 21, z = [1, 1].
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Ratio estimators
Randomised Quasi-Monte Carlo methods

For Monte Carlo, we can easily compute an estimate of the sampling
error V[f ]N−1 from the computed samples {f(ui)}Ni=1 using the
sample variance:

E[(f − E[f ])2] = V[f ] ≈ 1

N − 1

N∑
i=1

(
f(ui)−

1

N

N∑
i=1

f(ui)
)2
.

Computing the QMC estimator gives an estimate of E[f ], but does
not give an estimate of the error in this approximation.

To enable error estimation, it is common to randomise the low
discrepancy point set. We have to be careful to keep the structure!

For rank 1 lattice rules, we use a shift ∆ that is uniformly distributed
over [0, 1]du :

ÊrQMC
N (∆) =

1

N

N∑
i=1

f(frac
( i− 1

N
z + ∆

)
).
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Ratio estimators
Randomised Quasi-Monte Carlo methods

To estimate the error of ÊrQMC
N , we use M realisations of the random

shift ∆, {∆k}Mk=1, and compute the sample variance:

V[ÊrQMC
N ] ≈ 1

M − 1

M∑
k=1

(
ÊrQMC
N (∆k)−

1

M

M∑
k=1

ÊrQMC
N (∆k)

)2
.

Since we need to compute ÊrQMC
N (∆k), for k = 1, . . . ,M anyway, it

is common to use the shift-averaged estimator

ÊrQMC
N,M =

1

M

M∑
k=1

1

N

N∑
i=1

f
(
frac
( i− 1

N
z + ∆k

))
,

as an approximation to E[f ].
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Ratio estimators
Randomised Quasi-Monte Carlo methods

Using weighted spaces of dominating mixed smoothness, it is possible
to obtain an error bound

E∆[|Eπ0 [f ]− ÊrQMC
M,N |] ≤ C‖f‖1,weighted N

−1+δ, δ > 0.

‖f‖1,weighted :=

 ∑
ν⊆{1:du}

γ−1
ν

∫
[0,1]|ν|

(∫
[0,1]du−|ν|

∂|ν|f

∂uν
du{1:du}\ν

)2

duν

1/2

We want to keep M small (≈ 16) to retain the good convergence rate
of QMC.

The special case N = 1 corresponds to standard Monte Carlo.
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Ratio Estimators
Related works

A number of works have recently considered the ratio estimator approach
in the context of PDE constrained inverse problems, as it allows to reuse
machinery developed for π0:

[Schillings, Schwab ’13]: dimension-adaptive sparse grids

[Dick, Gantner, Le Gia, Schwab ’17]: (multilevel) higher order
Quasi-Monte Carlo

[Gantner, Peters ’18]: higher order Quasi-Monte Carlo for PDEs on
random domains

When γ2 � 1 or dy � 1, the posterior density πy may concentrate, and
the prior evaluations become difficult to evaluate accurately.

[Schillings, Schwab ’16]: rescaling of parameter space around
(unique) MAP point

[Schillings, Sprungk, Wacker ’20]: using Lapalace approximation of
posterior as reference measure
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