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Motivation

@ So far, we have mainly studied algorithms to infer a finite set of
parameters u € R%.

@ Today, we will focus on inferring an unknown function f: X — R.
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Problem formulation

e Given N function evaluations y = {2, f(2")})_,, we want to

reconstruct the underlying function f: X — R, X C R,

» This problem appears in many contexts including machine learning and
reduced order modelling.

» For general f, this is not an easy problem to solve.

@ Solving this problem in a Bayesian statistical framework results in a
posterior measure on f|y, allowing for uncertainty quantification in
the reconstruction.
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Gaussian process regression
Set-up [Rasmussen, Williams '06]

@ Gaussian process regression is an instance of the Bayesian framework.

e We put a Gaussian process prior GP(0, k) on f, where k is chosen to
reflect properties of f.

For {z;}™, C X, the random variables {f(x;)}, follow a joint Gaussian

1=

distribution with E[f(x;)] = 0 and C[f(x;), f(z;)] = k(xi, x;).

Sample paths Mean and standard deviation
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Gaussian process regression
Set-up [Rasmussen, Williams '06]
@ The Gaussian process posterior GP(mN, kn) on fly is obtained by

conditioning the prior on the observed data y = {z", f(z")})_;.
Here

mf, (z) = k(z, Dx)TK(Dn, Dn) ™ f(Dn),
kn(z,2') = k(z,2") — k(x, Dn)T K (Dy, Dy) " Yk(2', Dy),

where k(z, Dy) = [k(a: z1),... k(z,2V)] € RY and K(Dy, Dy) € RVXN
is the matrix with ij*® entry equal to k(z, 27).

3
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Sample paths Mean and standard deviation
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Gaussian process regression

Choice of prior distribution

@ The prior GP(0, k) needs to be chosen to reflect properties of f.

The covariance kernel k£ determines ; ret . LY
properties of the Gaussian process
and its sample paths:

Exponential covariance

@ smoothness (differentiability),
Aﬂ 0.2 0.4 0.6 0.8 1 40 0.2 04 0.6 0.8 1
@ contrast,
4 4
@ length scales of fluctuations, g
@ periodicity,
:
@ stationarity. :
40 02 04 0.6 0.8 1 40 02 04 0.6 0.8 1
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Gaussian process regression

Choice of prior distribution

@ The prior GP(0, k) needs to be chosen to reflect properties of f.

s

The covariance kernel k£ determines ret . LY
properties of the Gaussian process
and its sample paths:

o o

Exponential covariance
&

@ smoothness (differentiability),
40 0.2 0.4 0.6 0.8 1 40 0.2 04 0.6 0.8 1
@ contrast,
4 4
@ length scales of fluctuations, g
@ periodicity,
/
@ stationarity. :
40 02 04 0.6 0.8 1 40 02 04 0.6 0.8 1

@ Challenge: hyper-parameters 6 are usually unknown a-priori!
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Gaussian process regression

Empirical Bayes'

@ In a hierarchical Bayesian approach, we obtain the posterior f|y as a
marginal distribution of the joint posterior f,0|y. This is often
intractable.

@ We use an empirical Bayes' (or plug-in) approach, where we estimate
values of any hyper-parameters 6 from y = {z", f(z™)}_; and plug
the estimate 6 into the prior distribution.
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Gaussian process regression

Empirical Bayes'

@ In a hierarchical Bayesian approach, we obtain the posterior f|y as a
marginal distribution of the joint posterior f,0|y. This is often
intractable.

@ We use an empirical Bayes' (or plug-in) approach, where we estimate
values of any hyper-parameters 6 from y = {z", f(z™)}_; and plug
the estimate 6 into the prior distribution.

@ The sequence of estimates A can be found via maximum likelihood
estimation, maximum a-posteriori estimation, cross validation, ...

@ Under what conditions do we get posterior consistency for the
Gaussian process posterior GP(m{V(QN),k:N(GN)) as N — oo?
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Convergence of Gaussian process regression

Literature review

o Earlier references (not exhaustive!) on this question include:

> [Stein '88] and [Stein '93]

» [Choi and Schervish '07]

> [van der Vaart and van Zanten '11]
> [Scheuerer, Schaback, Schlather '13]

> L.

@ These results do not apply in our current setting where:

» the function f is a given deterministic function,
> the design points are deterministic,

> there is no noise in the training data,

» we want to measure the error in L?(X)-norms, ,

» and the estimated hyper-parameters §N change with N.
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Convergence of Gaussian process regression

Relation to Kernel Interpolation

@ To prove convergence as N — oo, we can make use of results from

numerical analysis. We want m{v — fand ky — 0.
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Convergence of Gaussian process regression

Relation to Kernel Interpolation

@ To prove convergence as N — oo, we can make use of results from

numerical analysis. We want m{v — fand ky — 0.

e We have m{v(x") = f(z") and ky(z",2") =0, forn=1,...,N.

@ The predictive mean m{v is a linear combination of kernel functions:

N
m{v(x) = Z ank(z,z"), for known a € RY.
n=1
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Convergence of Gaussian process regression

Relation to Kernel Interpolation

@ To prove convergence as N — oo, we can make use of results from

numerical analysis. We want m{v — fand ky — 0.

e We have m{v(x") = f(z") and ky(z",2") =0, forn=1,...,N.

@ The predictive mean m{v is a linear combination of kernel functions:
N
m{v(x) = Z ank(z,z"), for known a € RY.
n=1

@ The predictive mean m{v is a kernel interpolant of f, and in the

special case of isotropic kernels k(z, ') = k(||x — 2’||2), a radial basis
function interpolant.

@ Convergence properties will depend on the specific choice of k.
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Convergence of Gaussian process regression
Scattered Data Approximation [ALT, '20], [Wendland '04]

@ Suppose we use the family of Matérn covariances

o2 x—2a |2 \" x—a'||s
o) = 1Ty (25212) b, (1251

_llz—a'll2 )
A

12
. 1 2 2 xz—zx' ||
Special cases: v = 5 = o~ exp( and v =00 =0 oxp(fi“ Sz H2)

e 02 — contrast, A\ — fluctuation length scale and v — smoothness.
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Convergence of Gaussian process regression

Scattered Data Approximation
Theorem [ALT '20]

With covariance kernel kprai, we have with v* = limpy_,o0 Un

min{v,v _|_7 max{r*—v,
If = ml @)z < C o R g =n0h gy e xy-

decreasing in N non-decreasing in N
»convergence —sstability

) < C,hgiil{u,u* }pmax{u* —v,0} .

Furthermore, ||kN(§N)% lz2x Dy

o With design points Dy = {z" define the fill distance

nl’

hpy =sup inf |z —2"|2. hp, ~ N~1/d
zeX TNEDN

and mesh ratio

SUpgex infanepy ||z — ™2

PDy = - PDy = 1
ming,p, || — 2™ ||2
@ hp, — space filling, pp, — quasi-uniformity.
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Convergence of Gaussian process regression

Scattered Data Approximation
Theorem [ALT '20]

With covariance kernel kprai, we have with v* = limpy_,o0 Un

min{v,v + max{v*—v,
If = ml @)z < C o R g =n0h gy e xy-

decreasing in N non-decreasing in N
»convergence —sstability

) < C,hgiil{y,u* }pmax{u* —v,0} '

Furthermore, ||kN(§N)% lz2x Dy

e This result holds for any f € Htd/2(X).

@ We require 0 < G?V,XN, Un < 00, but estimates need not converge.
The dependency of C,C’ on (7-)\ AN, Un can be tracked explicitly.

. _ytdg/2 . .
@ Optimal convergence rates N~ =  are obtained with v* = v.

@ Penalty for over-estimating the smoothness only if pp, grows with
N, i.e. if Dy is not quasi-uniform.
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Conclusions

@ Using Gaussian process regression, we can determine a posterior
measure on an unknown function f given N function values.

@ We get posterior consistency as N — oo: HmN fllz2(xy — 0 and
1/2
1N llz2x) = 0.

@ The choice of L?-norm comes from applications - eg approximating
the solution operator of a PDE in an inverse problem.
We also get point-wise error estimates.

@ Posterior consistency is guaranteed under mild assumptions, and is
robust to prior mis-specification and learning of hyper-parameters.
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Deep Gaussian process regression

General framework [Dunlop et al, '18]

@ Deep Gaussian processes can be used as prior distributions in
regression.

@ A general framework allows for a large variety of constructions, which
can easily model complex behaviour and tune hyper-parameters.
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Deep Gaussian process regression

General framework [Dunlop et al, '18]

@ Deep Gaussian processes can be used as prior distributions in
regression.

@ A general framework allows for a large variety of constructions, which
can easily model complex behaviour and tune hyper-parameters.

e We consider sequences { fy}sen, of functions that are conditionally
Gaussian:
for~ GP(O, k(x,x')),

fes1lfe ~ GP(0, k(z, 2'; fo)).
o We refer to fr_1 as a deep Gaussian process with L layers.

@ In practice the number of layers L is often quite small. Some
mathematical justification for this is given in [Dunlop et al, '18],
which shows that many constructions converge as L — oc.
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Deep Gaussian process regression

Example: Composition

@ A particular example is the construction in [Damaniou, Lawrence '13],
which involves composition of Gaussian processes:

feralfe ~ GP(O, k(fo(z), fz(ﬂﬂ/))),

for fo : R — R. (Similar structure to deep neural networks).
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Deep Gaussian process regression

Example: Composition

@ A particular example is the construction in [Damaniou, Lawrence '13],
which involves composition of Gaussian processes:

fox1lfe~ GP(O, k(fo(z), fz(ﬁ));

for fo : R — R. (Similar structure to deep neural networks).

@ The general case f; : X C R* — R can be formulated as

feralfe ~ GP<0, k<G(fe(33))7G(fe(fU'))>>’
for suitable G : R — X.

@ This construction is known to display pathologies for large L, see
[Duvenaud et al '14].
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Deep Gaussian process regression

Example: Covariance kernel

@ Another example is based on the non-stationary covariance kernel
construction introduced in [Paciorek, Schervish '05].

e Given
> a stationary covariance kernel ks(||z — z’||2) and

» a function A(z) representing a (non-stationary) correlation length,
we define the non-stationary covariance kernel
2d/2)\(:c)d/4)\(x/)d/4 ||33 _ CL‘/HQ
(@) + M@\ V@) +A@)/2)

kns(z, 2’5 \) =
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Deep Gaussian process regression

Example: Covariance kernel

@ Another example is based on the non-stationary covariance kernel
construction introduced in [Paciorek, Schervish '05].

e Given
> a stationary covariance kernel ks(||z — z’||2) and

» a function A(z) representing a (non-stationary) correlation length,
we define the non-stationary covariance kernel
2d/2)\ d/4>\ nd/4 W
kNS(.Qf,.T/;)\) — (.’E) (‘,1:3 5 kS ||‘T T ||2 .
(A(@) + (") V(@) +A(@))/2

@ For a deep Gaussian process, choose \(x) = F'(fy(z)) for some
non-negative function F, e.g. A(x) = fo(x)? or AM(z) = exp(fi(z)):

feralfe~ GF‘(O, kns(x, s F(fz)))-
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Deep Gaussian process regression

Numerical examples: Covariance kernel

Bayesian Inference



Deep Gaussian process regression

Algorithmic considerations

@ We now want to use deep Gaussian processes as prior distribution.
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Deep Gaussian process regression

Algorithmic considerations

@ We now want to use deep Gaussian processes as prior distribution.

@ The iteration
fes1lfe ~ GP(0, k(z, 2'; fo))

can be written in the form

fer1 = R(fe)éer1,

where {£;} form an i.i.d. Gaussian sequence and, for each f, R(x) is
a linear operator. (Think X — RZ for X ~ N(0,C).C = RR")

@ To sample from the posterior distribution fr|y, we use a

Metropolis-Hastings algorithm on £ = [&p, ..., &z] that is well-defined
in function space.
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Deep Gaussian process regression

Numerical Example: Regression in 1d

We now want to use deep Gaussian processes as prior distribution.

05

Given data: noisy point evaluations at J = 50 equispaced points.
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Deep Gaussian process regression

Numerical Example: Regression in 1d

| 150 150 150
05 100 100 100
o 50 50 e 50
S
0.5 0 0 ]
] 02 0.4 0.6 0.8 1 ] 02 04 0.6 0.8 1 0 02 04 06 0.8 1 0 02 04 06 08 1
1.5
150 150
1
05 100 100
0 50 50
0.5 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 08 1 0 0.2 0.4 06 08 1
15
150
1
0.5 100
0 50
0.5 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1
15
,
b ﬂ
0
-0.5

Posterior means computed using MCMC.

Rows correspond to f3, fa, fi1 and fy respectively, from top to bottom.
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Deep Gaussian process regression

Numerical Example: Regression in 2d

Given data: noisy point evaluations at J = 1024 equispaced points.
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Deep Gaussian process regression

Numerical Example: Regression in 2d
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Deep Gaussian process regression

Numerical Example: Regression in 2d

Table: L2-errors || fT — E(f1|y)||r2 between the true field and sample means.

J 1 layer 2 layers 3 layers

1024 | 0.0856  0.0813  0.0681
256 | 0.1310 0.1260 0.1279
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Conclusions

@ We presented a general framework for constructing deep Gaussian
processes, which includes known constructions as particular examples.

@ Deep Gaussian processes can be used as priors in Bayesian inference
tasks including regression and classification. They offer very flexible
priors, which can easily model complex functions.

@ Compared to other non-stationary Gaussian processes, deep GPs

require less prior information and learn everything as part of the
inference.
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