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Motivation

So far, we have mainly studied algorithms to infer a finite set of
parameters u ∈ Rdu .

Today, we will focus on inferring an unknown function f : X → R.
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Problem formulation

Given N function evaluations y = {xn, f(xn)}Nn=1, we want to
reconstruct the underlying function f : X → R, X ⊆ Rdx .

I This problem appears in many contexts including machine learning and
reduced order modelling.

I For general f , this is not an easy problem to solve.

Solving this problem in a Bayesian statistical framework results in a
posterior measure on f |y, allowing for uncertainty quantification in
the reconstruction.
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Gaussian process regression
Set-up [Rasmussen, Williams ’06]

Gaussian process regression is an instance of the Bayesian framework.

We put a Gaussian process prior GP(0, k) on f , where k is chosen to
reflect properties of f .
For {xi}mi=1 ⊆ X, the random variables {f(xi)}mi=1 follow a joint Gaussian

distribution with E[f(xi)] = 0 and C[f(xi), f(xj)] = k(xi, xj).

Sample paths Mean and standard deviation
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Gaussian process regression
Set-up [Rasmussen, Williams ’06]

The Gaussian process posterior GP(mf
N , kN ) on f |y is obtained by

conditioning the prior on the observed data y = {xn, f(xn)}Nn=1.
Here

mf
N (x) = k(x,DN )TK(DN , DN )−1f(DN ),

kN (x, x′) = k(x, x′)− k(x,DN )TK(DN , DN )−1k(x′, DN ),

where k(x,DN ) = [k(x, x1), . . . , k(x, xN )] ∈ RN and K(DN , DN ) ∈ RN×N

is the matrix with ijth entry equal to k(xi, xj).

Sample paths Mean and standard deviation
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Gaussian process regression
Choice of prior distribution

The prior GP(0, k) needs to be chosen to reflect properties of f .

The covariance kernel k determines
properties of the Gaussian process

and its sample paths:

smoothness (differentiability),

contrast,

length scales of fluctuations,

periodicity,

stationarity.

Challenge: hyper-parameters θ are usually unknown a-priori!

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 7 / 28



Gaussian process regression
Choice of prior distribution

The prior GP(0, k) needs to be chosen to reflect properties of f .

The covariance kernel k determines
properties of the Gaussian process

and its sample paths:

smoothness (differentiability),

contrast,

length scales of fluctuations,

periodicity,

stationarity.

Challenge: hyper-parameters θ are usually unknown a-priori!

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 7 / 28



Gaussian process regression
Empirical Bayes’

In a hierarchical Bayesian approach, we obtain the posterior f |y as a
marginal distribution of the joint posterior f, θ|y. This is often
intractable.

We use an empirical Bayes’ (or plug-in) approach, where we estimate
values of any hyper-parameters θ from y = {xn, f(xn)}Nn=1 and plug

the estimate θ̂N into the prior distribution.

The sequence of estimates θ̂N can be found via maximum likelihood
estimation, maximum a-posteriori estimation, cross validation, . . .

Under what conditions do we get posterior consistency for the
Gaussian process posterior GP(mf

N (θ̂N ), kN (θ̂N )) as N →∞?
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Convergence of Gaussian process regression
Literature review

Earlier references (not exhaustive!) on this question include:

I [Stein ’88] and [Stein ’93]

I [Choi and Schervish ’07]

I [van der Vaart and van Zanten ’11]

I [Scheuerer, Schaback, Schlather ’13]

I . . .

These results do not apply in our current setting where:

I the function f is a given deterministic function,

I the design points are deterministic,

I there is no noise in the training data,

I we want to measure the error in L2(X)-norms, ,

I and the estimated hyper-parameters θ̂N change with N .
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Convergence of Gaussian process regression
Relation to Kernel Interpolation

To prove convergence as N →∞, we can make use of results from
numerical analysis. We want mf

N → f and kN → 0.

We have mf
N (xn) = f(xn) and kN (xn, xn) = 0 , for n = 1, . . . , N .

The predictive mean mf
N is a linear combination of kernel functions:

mf
N (x) =

N∑
n=1

αnk(x, xn), for known α ∈ RN .

The predictive mean mf
N is a kernel interpolant of f , and in the

special case of isotropic kernels k(x, x′) = k(‖x− x′‖2), a radial basis
function interpolant.

Convergence properties will depend on the specific choice of k.
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Convergence of Gaussian process regression
Scattered Data Approximation [ALT, ’20], [Wendland ’04]

Suppose we use the family of Matèrn covariances

kMat(x, x
′) =

σ2

Γ(ν)2ν−1

(
‖x− x′‖2

λ

)ν
Bν

(
‖x− x′‖2

λ

)
.

Special cases: ν = 1
2
⇒ σ2 exp(− ‖x−x

′‖2
λ

) and ν =∞⇒ σ2 exp(− ‖x−x
′‖22

λ2 ).

σ2 → contrast, λ→ fluctuation length scale and ν → smoothness.
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Convergence of Gaussian process regression
Scattered Data Approximation

Theorem [ALT ’20]

With covariance kernel kMat, we have with ν∗ = limN→∞ ν̂N

‖f −mf
N (θ̂N )‖L2(X) ≤ C h

min{ν,ν∗}+ du
2

DN︸ ︷︷ ︸
decreasing in N
→convergence

ρ
max{ν∗−ν,0}
DN︸ ︷︷ ︸

non-decreasing in N
→stability

‖f‖Hν+du/2(X).

Furthermore, ‖kN (θ̂N )
1
2 ‖L2(X) ≤ C ′h

min{ν,ν∗}
DN

ρ
max{ν∗−ν,0}
DN

.

With design points DN = {xn}Nn=1, define the fill distance

hDN = sup
x∈X

inf
xn∈DN

‖x− xn‖2. hDN ∼ N
−1/dx

and mesh ratio

ρDN =
supx∈X infxn∈DN ‖x− xn‖2

minn6=m ‖xn − xm‖2
ρDN ≥ 1

hDN → space filling, ρDN → quasi-uniformity.
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1
2 ‖L2(X) ≤ C ′h

min{ν,ν∗}
DN

ρ
max{ν∗−ν,0}
DN

.

This result holds for any f ∈ Hν+du/2(X).

We require 0 < σ̂2N , λ̂N , ν̂N <∞, but estimates need not converge.

The dependency of C,C ′ on σ2N , λ̂N , ν̂N can be tracked explicitly.

Optimal convergence rates N−
ν+dx/2
dx are obtained with ν∗ = ν.

Penalty for over-estimating the smoothness only if ρDN grows with
N , i.e. if DN is not quasi-uniform.
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Conclusions

Using Gaussian process regression, we can determine a posterior
measure on an unknown function f given N function values.

We get posterior consistency as N →∞: ‖mf
N − f‖L2(X) → 0 and

‖k1/2N ‖L2(X) → 0.

The choice of L2-norm comes from applications - eg approximating
the solution operator of a PDE in an inverse problem.
We also get point-wise error estimates.

Posterior consistency is guaranteed under mild assumptions, and is
robust to prior mis-specification and learning of hyper-parameters.
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Deep Gaussian process regression
General framework [Dunlop et al, ’18]

Deep Gaussian processes can be used as prior distributions in
regression.

A general framework allows for a large variety of constructions, which
can easily model complex behaviour and tune hyper-parameters.

We consider sequences {f`}`∈N0 of functions that are conditionally
Gaussian:

f0 ∼ GP
(
0, k(x, x′)

)
,

f`+1|f` ∼ GP
(
0, k(x, x′; f`)

)
.

We refer to fL−1 as a deep Gaussian process with L layers.

In practice the number of layers L is often quite small. Some
mathematical justification for this is given in [Dunlop et al, ’18],
which shows that many constructions converge as L→∞.
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Deep Gaussian process regression
Example: Composition

A particular example is the construction in [Damaniou, Lawrence ’13],
which involves composition of Gaussian processes:

f`+1|f` ∼ GP
(

0, k
(
f`(x), f`(x

′)
))
,

for f` : R→ R. (Similar structure to deep neural networks).

The general case f` : X ⊆ Rd → R can be formulated as

f`+1|f` ∼ GP

(
0, k
(
G
(
f`(x)

)
, G
(
f`(x

′)
)))

,

for suitable G : R→ X.

This construction is known to display pathologies for large L, see
[Duvenaud et al ’14].
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Deep Gaussian process regression
Example: Covariance kernel

Another example is based on the non-stationary covariance kernel
construction introduced in [Paciorek, Schervish ’05].

Given
I a stationary covariance kernel kS(‖x− x′‖2) and

I a function λ(x) representing a (non-stationary) correlation length,

we define the non-stationary covariance kernel

kNS(x, x′;λ) =
2d/2λ(x)d/4λ(x′)d/4

(λ(x) + λ(x′))d/2
kS

(
‖x− x′‖2√

(λ(x) + λ(x′))/2

)
.

For a deep Gaussian process, choose λ(x) = F (f`(x)) for some
non-negative function F , e.g. λ(x) = f`(x)2 or λ(x) = exp(f`(x)):

f`+1|f` ∼ GP
(

0, kNS(x, x′;F (f`))
)
.
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Deep Gaussian process regression
Numerical examples: Covariance kernel
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Deep Gaussian process regression
Algorithmic considerations

We now want to use deep Gaussian processes as prior distribution.

The iteration
f`+1|f` ∼ GP

(
0, k(x, x′; f`)

)
can be written in the form

f`+1 = R(f`)ξ`+1,

where {ξ`} form an i.i.d. Gaussian sequence and, for each f , R(x) is
a linear operator. (Think X = RZ for X ∼ N(0, C), C = RRT .)

To sample from the posterior distribution fL|y, we use a
Metropolis-Hastings algorithm on ξ = [ξ0, . . . , ξL] that is well-defined
in function space.
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Deep Gaussian process regression
Numerical Example: Regression in 1d

We now want to use deep Gaussian processes as prior distribution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Given data: noisy point evaluations at J = 50 equispaced points.

A. Teckentrup (Edinburgh) Bayesian Inference March 21, 2022 20 / 28



Deep Gaussian process regression
Numerical Example: Regression in 1d
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Posterior means computed using MCMC.

Rows correspond to f3, f2, f1 and f0 respectively, from top to bottom.
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Deep Gaussian process regression
Numerical Example: Regression in 2d
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Given data: noisy point evaluations at J = 1024 equispaced points.
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Deep Gaussian process regression
Numerical Example: Regression in 2d
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Deep Gaussian process regression
Numerical Example: Regression in 2d

Table: L2-errors ‖f† − E(fL|y)‖L2 between the true field and sample means.

J 1 layer 2 layers 3 layers

1024 0.0856 0.0813 0.0681

256 0.1310 0.1260 0.1279
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Conclusions

We presented a general framework for constructing deep Gaussian
processes, which includes known constructions as particular examples.

Deep Gaussian processes can be used as priors in Bayesian inference
tasks including regression and classification. They offer very flexible
priors, which can easily model complex functions.

Compared to other non-stationary Gaussian processes, deep GPs
require less prior information and learn everything as part of the
inference.
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