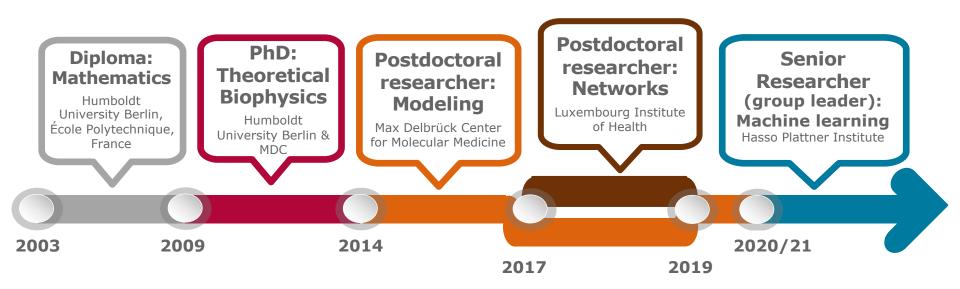


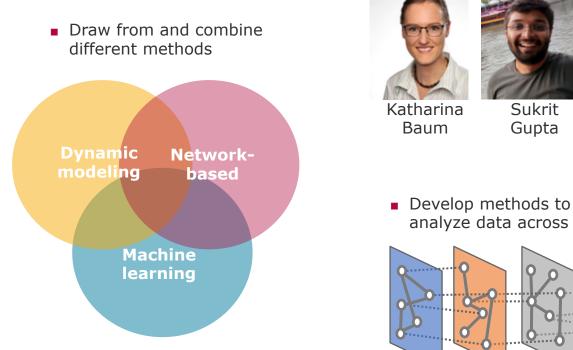
Integrating multi-layered data and prior knowledge into machine learning

Katharina Baum, Network-based data analysis Hasso Plattner Institute for Digital Engineering, University of Potsdam Spring School "Data Assimilation", March 22, 2023

Katharina Baum



Overview: Network-based data analysis



Sukrit Gupta

Pauline Hiort

Pascal Iversen

Theresa Hradilak

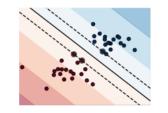
Master students

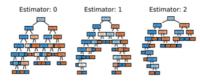
- Tim Garrels
- Pia Rissom
- Clemens Woest

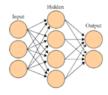
0

ML, networks, dynamical models have different strengths and weaknesses

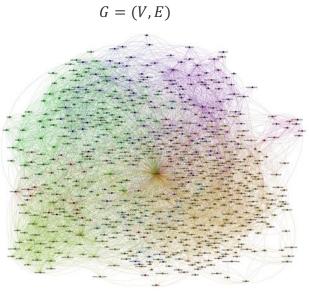
ML: predictions from unstructured data



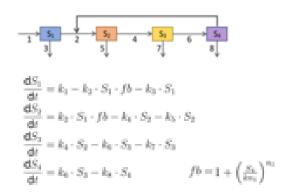


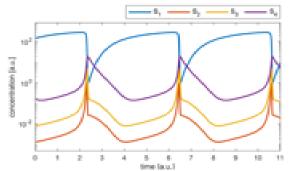


networks (graphs): capturing interactions

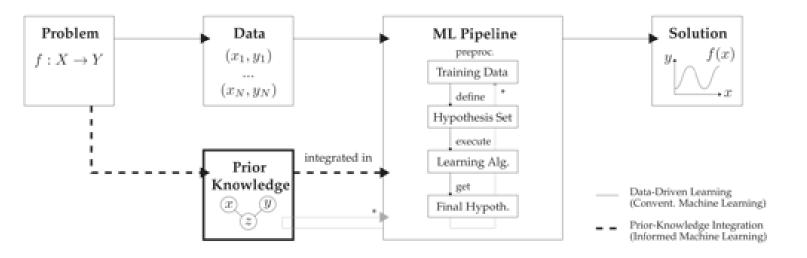


https://www.flickr.com/photos/speedoflife/ 6924482682; Andy Wang dynamical models: temporal properties



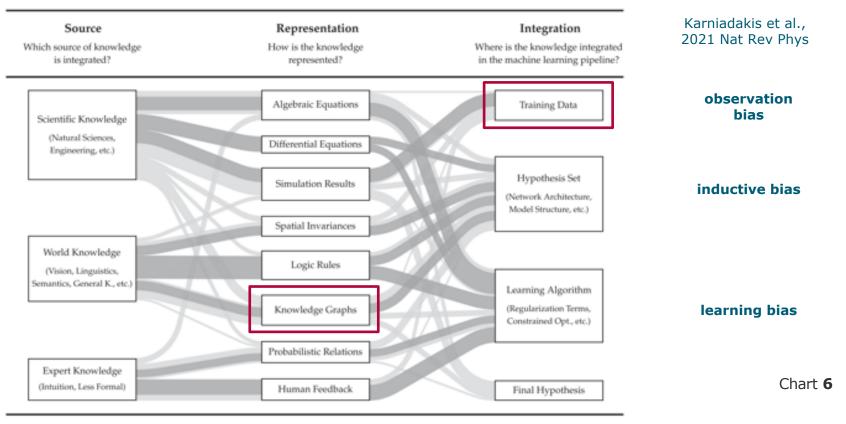


Informed machine learning von Rueden et al., 2023



Network-based data analysis Katharina Baum

Informed machine learning von Rueden et al., 2023, IEEE TKDE

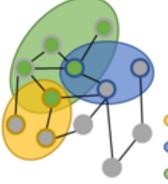


Including knowledge by feature engineering

Prediction task: given a disease *D*, and two drugs - classify the combination of drugs as good (approved, 1) or bad (adverse, 0) $f_D: X \times X \rightarrow \{0,1\}$

molecular network

nodes: proteins, edges: their interactions



Drug targets drug A
 Drug targets drug B
 Disease genes

 prediction with simple ML approaches (decision tree, SVM,...)

- prior knowledge/data
 (1) molecular network: protein-protein interactions
 (2) disease proteins
 (3) known targets of drugs
- infer features: distances

$$\widetilde{f_D}:\mathbb{R}^3\longrightarrow\{0,1\}$$

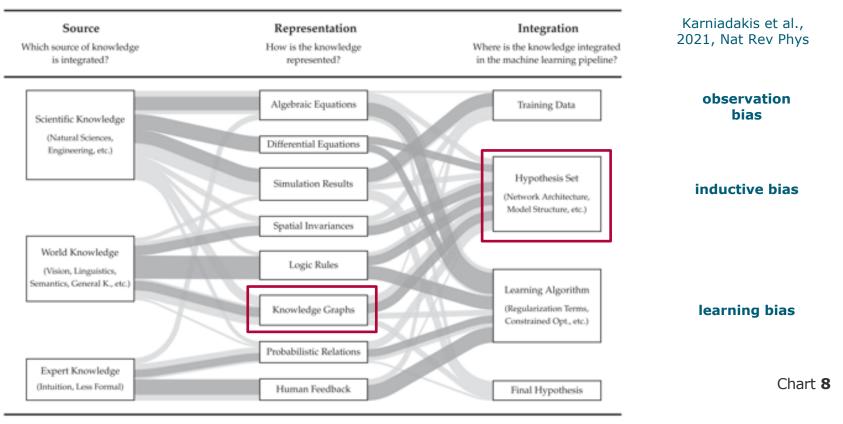
Network-based data analysis

Katharina Baum

Chart 7

Pauline Hiort

Informed machine learning von Rueden et al., 2023 IEEE TKDE



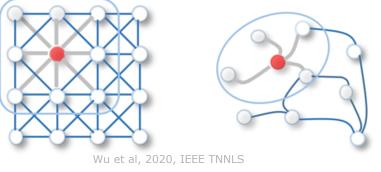
Graph-convolutional neural networks – bringing prior knowledge on proximity into ML

We have a graph G = (V, E) with |V| = N with adjacency matrix AWe have node feature vectors x_i of dimension F for i = 1, ..., N, i.e. an NxF-dimensional node feature matrix X

The update rule for hidden layer I+1 is given by

$$H^{(l+1)} = f(H^{(l)}, A) = \sigma\left(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}\right)$$

with $H^{(0)} = X$ $\hat{A} = A + I$ \hat{D} degree diagonal matrix of \hat{A} $W^{(l)}$ weight matrix of the lth neuronal layer $\sigma(\cdot)$ nonlinear activation function convolution over neighbours in the graph instead of over neighbouring pixels



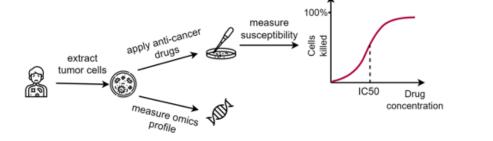
Kipf & Welling, ICLR 2017

HPI

Including knowledge by using graph neural networks

Prediction task: given a cell line, and a drug – predict how strongly the cell line responds to the drug

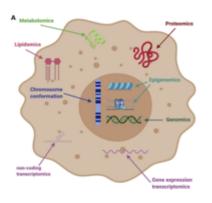
 $f: C \times X \longrightarrow \mathbb{R}$



Pascal Iversen

 molecular properties of a cell line + number of features

Transcript- omics	Mutation	Methy- lation	Copy Nb Variation
17,737	30,333	14,726	20,669



Network-based data analysis Katharina Baum

 drug properties: targets, molecule structure, induced differential expression

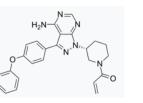
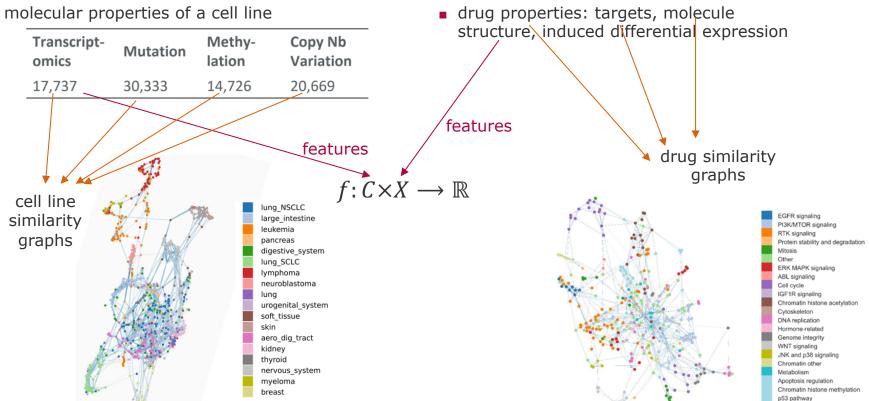


Chart 10

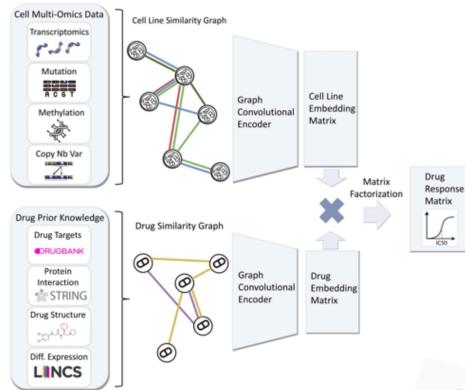
Including knowledge by using graph neural networks



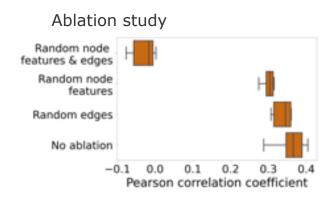
molecular properties of a cell line

HPI

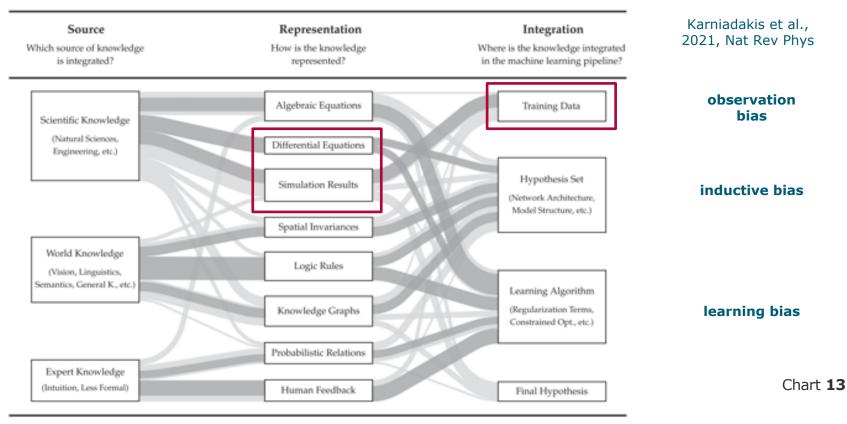
Drug response prediction with similarity graphs

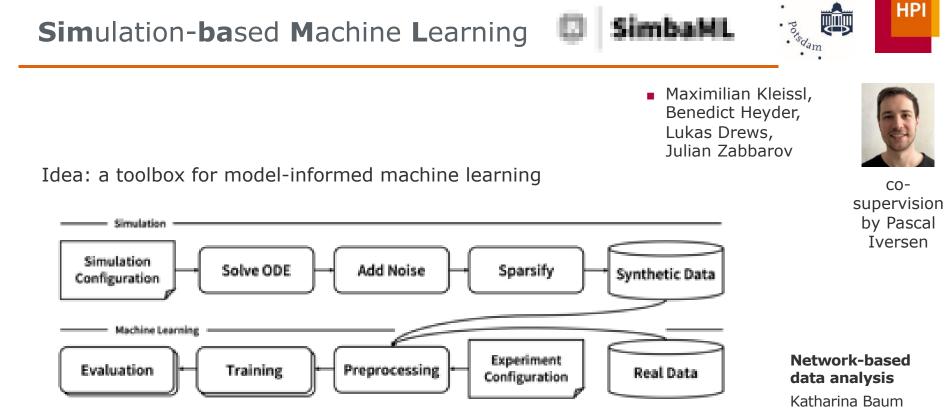


Model	Pearson	MSE
GCMF	0.36 ± 0.04	0.88 ± 0.03
U-GCMF	0.34 ± 0.06	0.90 ± 0.04
PaccMann ³	0.35 ± 0.02	0.97 ± 0.10
Ridge	0.32 ± 0.02	0.94 ± 0.02
SRMF ⁴	0.01 ± 0.02	1.11 ± 0.03



Informed machine learning von Rueden et al., 2023 IEEE TKDE



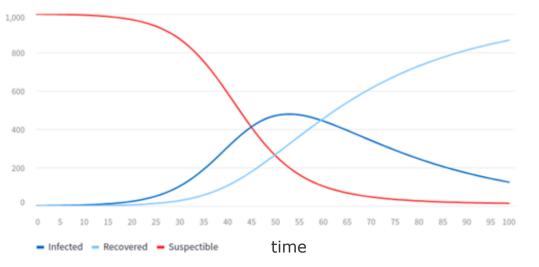


University.

Simulation with SimbaML: SIR model

SIR: susceptible, infected, recovered

$$egin{aligned} rac{dS}{dt} &= -rac{eta IS}{N}, \ rac{dI}{dt} &= rac{eta IS}{N} - \gamma I, \ rac{dR}{dt} &= \gamma I, \end{aligned}$$



config:

- ranges or distributions of initial conditions
- ranges or distributions of kinetic parameters
- solver, error, time series or steady state
- noise, constraints,...

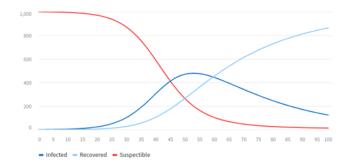
Network-based data analysis Katharina Baum

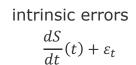
Different noise options

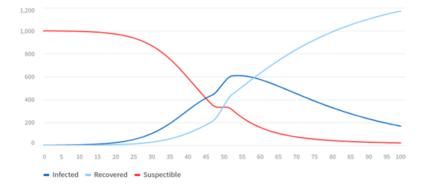
$$\begin{split} \frac{dS}{dt} &= -\frac{\beta IS}{N}, \\ \frac{dI}{dt} &= \frac{\beta IS}{N} - \gamma I, \\ \frac{dR}{dt} &= \gamma I, \end{split}$$

measurement errors $S(t) + \varepsilon_{S(t)}$ $R(t) + \varepsilon_{R(t)}$ $I(t) + \varepsilon_{I(t)}$ $\varepsilon_{\alpha} \sim N(0, \sigma^{2})$

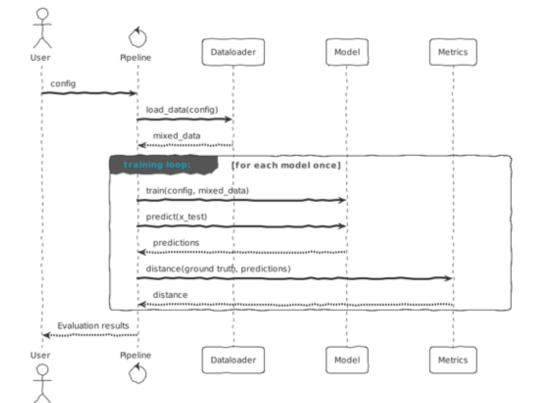






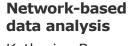


Machine learning with SimbaML



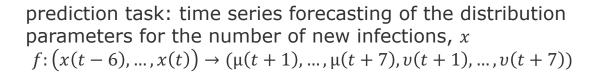
SimbaML supports ML models from

- Keras,
- PyTorch Lightning, and
- scikit-learn.



Katharina Baum

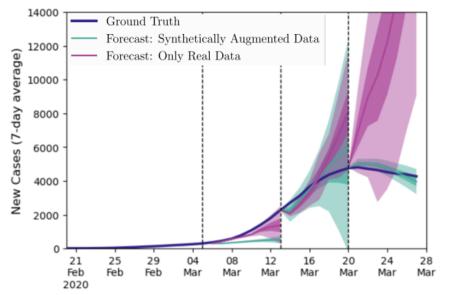
Potential application of SimbaML: model pre-training in sparse data situations



assuming $x(t + k) = \mu(t + k) + \varepsilon(t + k)$ with $\varepsilon(t + k) \sim T(v(t + k))$

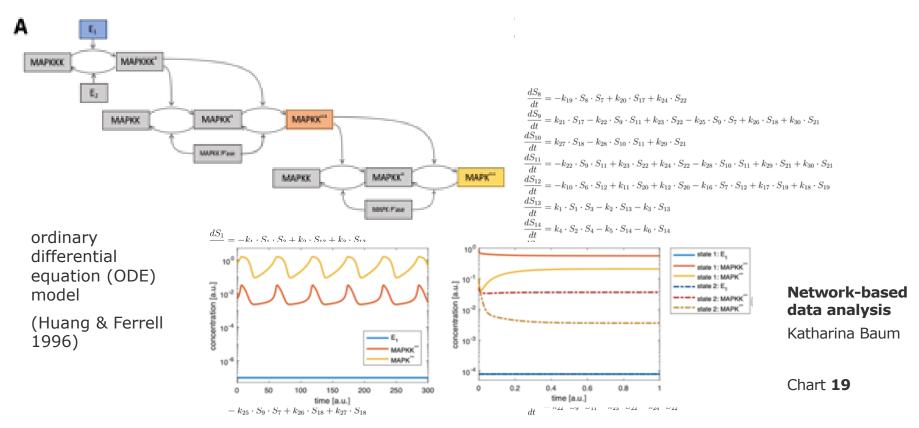
Can we supplement the model with simulated data from SimbaML?

- simulate time series using an SIR model



Date

Potential application of SimbaML: Determine the best ML prediction model



prediction task: time series forecasting of a single observed variable of the system, $x f: (x(t-4), ..., x(t)) \rightarrow (x(t+1), x(t+2), x(t+3))$

B 0.12

0.11

Normalized RMSE

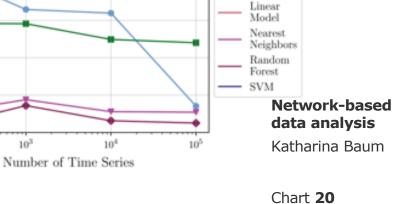
0.07

0.06

102

Which ML model performs best with the given amount of training data?

- synthesize different numbers of time series (20 time steps length) with SimbaML on the basis of the MAPK ODE model
- train using different ML models



Universita

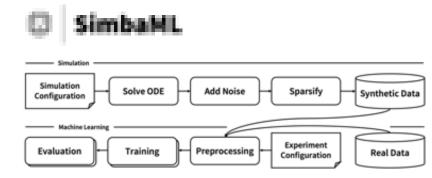
Porsdam

Neural Network

Decision Tree HPI

Potential application of SimbaML: Determine the best ML prediction model

Outlook



- examination of effects of different assumptions of noise
- explore transfer learning
- benchmark methods of explainability
- assess other informed ML approaches
- role of uncertainty, active learning

In general:

transfer to clinically relevant settings

- (1) personalized predictions
- (2) transfer learning approaches
- (3) explainable predictions
- (4) include additional data

Genomics england

ICAHN School of Medicine at Mount Sinai

Digital Engineering • Universität Potsdam

Thank you!

Katharina Baum, Network-based data analysis, Hasso Plattner Institute for Digital Engineering, University of Potsdam Spring School "Data Assimilation", March 22, 2023