• Gottwald, Georg A. & Reich, S. (2024). Localized Schrödinger bridge sampler arXiv:2409.07968

  • Albrecht, J., Opper, M., and Großmann, R. (2024): Inferring Parameter Distributions in Heterogeneous Motile Particle Ensembles: A Likelihood Approach for Second Order Langevin Models. arxiv:2411.08692

  • Datta, A., Beier, S., Pfeifer, V., Großmann, R., and Beta, C. (2024): Bacterial motility in porous media follows an active renewal process with power-law distributed dwell times. arxiv: 2408.02317

  • Carere, G. and Lie, H. C. (2024). Generalised rank-constrained approximations of Hilbert-Schmidt operators on separable Hilbert spaces and applications, arXiv 2408.05104

  • Carere, G. and Lie, H. C. (2024). Optimal low-rank approximations of posteriors for linear Gaussian inverse problems on Hilbert spaces, arXiv 2411.01112

  • Spokoiny, V. (2024). Estimation for SLS models: finite sample guaranteesarXiv:2404.14227

  • Lie, H. C. (2024): Bayesian inference of covariate-parameter relationships for population modelling. ArXiv 2407.09640

  • Tiepner, A. and Ziebell, E. (2024): Parameter estimation in hyperbolic linear SPDEs from multiple measurementsarXiv:2407.13461

  • Ziebell, E. (2024): Non-parametric estimation for the stochastic wave equationarXiv:2404.18823

  • Datta, A., Beta, C. and Großmann, R. (2024): The random walk of intermittently self-propelled particles. arXiv:2406.15277 (2024)

  • Albrecht, J. and Reich, S. (2024): Robust parameter estimation for partially observed second-order diffusion processes. arXiv:2406.14738

  • Siobhán Correnty, Melina A. Freitag, Kirk M. Soodhalter (2023). Chebyshev HOPGD with sparse grid sampling for parameterized linear systemsarXiv:2309.14178

  • Kim, J. W. and Mehta, P. G. (2024): Arrow of Time in Estimation and Control: Duality Theory Beyond the Linear Gaussian ModelarXiv 2405.07650

  • Kim, J. W., Joshi, A. A., and Mehta, P. G. (2024): Backward Map for Filter Stability AnalysisarXiv 2405.01127

  • Kim, J. W., Taghvaei, A., and Mehta, P. G. (2024): Divergence metrics in the study of Markov and hidden Markov processesarXiv 2404.15779

  • Cherepanov, V., and Ertel, S. W. (2024): Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows. arXiv: 2405.13691

  • Tienstra, M. (2024). Early Stopping for Ensemble Kalman-Bucy Inversion. arXiv:2403.18353

  • Gottwald, G., Li, F., Marzouk, Y., Reich, S (2024). Stable generative modelling using diffusion maps. arXiv 2401.04372

  • König, J., Pfeffer, M. and Stoll, M. (2023). Efficient training of Gaussian processes with tensor product structure. arXiv 2312.15305.

  • Engbert, R. and Rabe, M. M. (2023). Tutorial on dynamical modeling of eye movements in reading. doi: 10.31234/osf.io/dsvmt

     

  • Lopopolo, A. and Rabovsky, M. (2023). Tracking lexical and semantic prediction error underlying the N400 using artificial neural network models of sentence processing. doi: 10.1101/2022.11.14.516396

  • Bhandari, D., Pidstrigach, J., and Reich, S. (2023). Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in ReLU Networks. arXiv:2309.04742 

  • Spokoiny, V. (2023). Deviation bounds for the norm of a random vector under exponential moment conditions with applicationsarXiv:2309.02302

  • Reich, S. (2023): A particle-based Algorithm for Stochastic Optimal ControlarXiv 2311.06906

  • Spokoiny, V. (2023). Sharp deviation bounds and concentration phenomenon for the squared norm of a sub-Gaussian vectorarXiv:2305.07885v1

     

  • Pasemann, G., Beta C. and Stannat, W. (2023). Stochastic Reaction-Diffusion Systems in Biophysics: Towards a Toolbox for Quantitative Model Evaluation. arXiv: 2307.06655

  • Spokoiny, V. (2023). Nonlinear regression: finite sample guaranteesarXiv:2305.08193

  • Spokoiny, V. (2023). Mixed Laplace approximation for marginal posterior and Bayesian inference in error-in-operator modelarXiv:2305.09336

  • Chen, Y, Huang D.Z., Huang J., Reich, S., and Stuart, A.M. (2023). Sampling via gradient flows in the space of probability measures. arXiv:2310.03597

  • Pidstrigach, J., Marzouk, Y., Reich, S., and Wang, S. (2023). Infinite-Dimensional Diffusion Models. arXiv 2302.10130

  • Liu, S., Reich, S., and Tong, X.T. (2023). Dropout ensemble Kalman inversion for high dimensional inverse problems. arXiv:2308.16784

  • Reiß, M., Strauch, C., and Trottner, L. (2023): Change point estimation for a stochastic heat equationarXiv:2307.10960

  • Pasemann, G., Beta, C., and Stannat, W. (2023): Stochastic Reaction-Diffusion Systems in Biophysics: Towards a Toolbox for Quantitative Model EvaluationarXiv:2307.06655

  • Gaudlitz, S. (2023): Non-parametric estimation of the reaction term in semi-linear SPDEs with spatial ergodicity.arXiv:2307.05457

  • Kim, J. W. and Mehta, P. G. (2023). Variance Decay Property for Filter StabilityarXiv 2305.12850

  • Chen, Y, Huang D.Z., Huang J., Reich, S., and Stuart, A.M. (2023). Gradient flows for sampling: Mean-field models, Gaussian approximations and affine invariance. arXiv:2302.11024

  • Cvetkovic, N., Lie, H. C., Bansal, H., and Veroy-Grepl, K. (2023): Choosing observation operators to mitigate model error in Bayesian inverse problems. ArXiv 2301.04863

  • Kim, J.W. and Reich, S. (2023): On forward-backward SDE approaches to continuousßtime minimum variance estimationarXiv 2304.12727

  • Pidstrigach, J., Marzouk, Y., Reich, S., and Wang., S. (2023). Infinite-dimensional diffusion models for function spaces arXiv:2302.10130

  • Irwin, B. and Reich, S. (2023). EnKSGD: A class of preconditioned black box optimization and inversion algorithmsarXiv:2303.16494.

  • Mach, T. and Freitag, M.A. (2023). Solving the Parametric Eigenvalue Problem by Taylor Series and Chebyshev ExpansionarXiv 230212.03661

  • Schwetlick, L. and Reich S. and Engbert R. (2023). Bayesian Dynamical Modeling of Fixational Eye MovementsarXiv:2303.11941.

  • Rabe, M. M., Paape, D., Mertzen, D., Vasishth, S., and Engbert, R. (2023). SEAM: An integrated activation-coupled model of sentence processing and eye movements in readingarXiv:2303.05221

  • Janák, J. and Reiß, M. (2023): Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements. arXiv:2303.00074v1

  • Kemeth, F., Alonso, S., Echebarria, B., Moldenhawer, T., Beta, C. and Kevrekidis I. (2022). Black and Gray Box Learning of Amplitude Equations: Application to Phase Field Systems. arXiv: 2207.03954

  • Schindler, D., Moldenhawer, T., Beta, C., Huisinga, W. and Holschneider, M. (2022). Three-component contour dynamics model to simulate and analyze amoeboid cell motility. arXiv:2210.12978

  • Reich, S. (2022): Data assimilation: A dynamic homotopy-based coupling approacharXiv 2209.05279

  • Calvello, E., Reich, S. and Stuart A.M.(2022): Ensemble Kalman methods: A mean field approacharXiv 2209.11371

  • Huang, D.Z., Huang, J., Reich, S., and Stuart, A.M. (2022). Efficient derivative-free Bayesian inference for large-scale inverse problemsarXiv:2204.04386.

  • Gaudlitz, S. and Reiß, M. (2022): Estimation for the reaction term in semi-linear SPDEs under small diffusivity. arXiv:2203.10527

  • Zadorozhnyi, O., Gaillard, P., Gerchinovitz, S., and Rudi, A. (2021): Online nonparametric regression with Sobolev kernels. arxiv: 2102.03594

  • Coghi, M., Torstein, N., Nuesken, N., and Reich, S. (2022). Rough McKean-Vlasov dynamics for robust ensemble Kalman filtering arXiv:2107.06621

  • Lange, T. (2020): Derivation of Ensemble Kalman-Bucy Filters with unbounded nonlinear coefficients. arXiv 2012.07572

  • Pathiraja, S. (2020): L2 convergence of smooth approximations of Stochastic Differential Equations with unbounded coefficients. arXiv 2011.13009

  • Castillo, A. M., de Wiljes, J., Shprits, Y. Y., and Aseev, N. A. (2020). Reconstructing the dynamics of the outerelectron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3Dcode, ESSOAr. doi:10.1002/essoar.10504674.

  • Carpentier, A., Vernade, C., and Abbasi-Yadkori, Y. (2020): The elliptical potential lemma revisited. arXiv: 2010.10182.

  • Seelig, S., Risse, S., and Engbert, R. (2020). Predictive modeling of the influence of parafoveal informationprocessing on eye guidance in reading.  doi:10.31234/osf.io/vbmqn

  • Holschneider, M., Ferrat, K., Zöller, G., Molkenthin, C., and Hainzl, S. (2020). Richter b-value maps from local moments of seismicityarXiv:2010.12298

  • Houdebert, P., Zass, A. (2020), An explicit continuum Dobrushin uniqueness criterion for Gibbs point processes with non-negative pair potentials. arxiv 2009.06352

  • Rastogi, A. and Mathé, P. (2020): Inverse learning in Hilbert scales.arXiv 2002.10208

  • Celisse, A. and Wahl, M. (2020): Analyzing the discrepancy principle for kernelized spectral filter learning algorithms.arXiv: 2004.08436

  • Maier C., Hartung N., Kloft C., Huisinga W., de Wiljes J. (2020): Combining reinforcement learning with data assimilation for individualised dosing policies in oncology. arXiv:2006.01061

  • Zhelavskaya, I., Aseev, N. A., Shprits, Y. Y., and Spasojevi, M. (2020). A combined neural network- and physics-based approach for modeling the plasmasphere dynamics, ESSOAr. doi:10.1002/essoar.10502691.1

  • Duval, C. and Mariucci, E. (2020): Non-asymptotic control of the cumulative distribution function of Lévy processes. arXiv 2003.09281

  • Vernade, C., Carpentier, A., Lattimore, T., Zappella, G., Ermis, B. and Brueckner, M. (2020): Linear Bandits with Stochastic Delayed Feedback. arXiv:1807.02089

  • Spokoiny, V. (2019). Bayesian inference for nonlinear inverse problems. arXiv:1912.12694

  • Lange, T. and Stannat, W. (2019): On the continuous time limit of Ensemble Square Root Filters. arXiv 1910.12493

  • Spokoiny, V., and Panov, M. (2019). Accuracy of Gaussian approximation in nonparametric Bernstein–vonMises theorem. arXiv:1910.06028

  • Nuesken, N. and Reich, S. (2019). Note on Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and StuartarXiv:1908.10890

  • Houdebert, P. (2019). Phase transition of the non-symmetric Continuum Potts modelarXiv: 1908.10066

  • Avanesov, V. (2019). How to gamble with non-stationary X-armed bandits and have no regretsarXiv:1908.07636

  • Avanesov, V. (2019). Structural break analysis in high-dimensional covariance structure. arXiv: 1803.00508

  • Avanesov, V. (2019). Nonparametric Change Point Detection in Regression. arXiv:1903.02603

  • Lefakis, L., Zadorozhnyi, O. and Blanchard, G. (2019): Efficient Regularized Piecewise-Linear Regression TreesarXiv: 1907.00275 

  • Zadorozhnyi, O., Blanchard, G., and Carpentier, A. (2019): Restless dependent bandits with fading memory. arXiv: 1906.10454 

  • Blanchard, G., Mathé, P., and Mücke, N. (2019): Lepskii Principle in Supervised Learning. arXiv: 1905.10764 

  • Wahl, M. (2019): A note on the prediction error of principal component regression.arXiv: 1811.02998

  • Carpentier, A., Duval, C., and Mariucci, E. (2019): Total variation distance for discretely observed Lévy processes: a Gaussian approximation of the small jumps. arXiv: 1810.02998

  • Duval, C. and Mariucci, E. (2019): Compound Poisson approximation to estimate the Lévy density. arXiv: 1702.08787 

  • Jirak, M. and Wahl, M. (2018): Perturbation bounds for eigenspaces under a relative gap condition.arXiv: 1803.03868

  • Pathiraja, S. and van Leeuwen, P.J. (2018). Model uncertainty estimation in data assimilation for multi-scale systems with partially observed resolved variables, Quarterly Journal of the Royal Meteorological Society, under review, arXiv: 1807.09621

  • Jirak, M. and Wahl, M. (2018): Relative perturbation bounds with applications to empirical covariance operators.arXiv: 1802.02869

  • Gribonval, R., Blanchard, G.,  Keriven, N. and Traonmilin, Y. (2017). Compressive Statistical Learning with Random Feature Moments.arXiv 1706.07180