Publications
- S. Beier, V. Pfeifer, A. Datta, R. Großmann, C. Beta (2025). Deciphering the dual chemotaxis strategy of bacteria in porous mediaarXiv:2503.05286 
- Josie König, Elizabeth Qian, Melina A. Freitag (2025). Dimension and model reduction approaches for linear Bayesian inverse problems with rank-deficient prior covariancesarXiv 2506.23892 
- Opper, Manfred & Reich, S. (2025). On a mean-field Pontryagin minimum principle for stochastic optimal controlarXiv:2506.10506 
- Reich, S. (2025) Ensemble Kalman-Bucy filtering for nonlinear model predictive controlarXiv:2503.12474 
- Gottwald, G.A., Liu, S., Marzouk, Y., Reich, S. & Tong, X.T. (2025) Localized diffusion models for high dimensional distributions generationarXiv:2505.04417 
- Gottwald, Georg A. & Reich, S. (2024). Localized Schrödinger bridge sampler arXiv:2409.07968 
- Albrecht, J., Opper, M., and Großmann, R. (2024): Inferring Parameter Distributions in Heterogeneous Motile Particle Ensembles: A Likelihood Approach for Second Order Langevin Models. arxiv:2411.08692 
- Datta, A., Beier, S., Pfeifer, V., Großmann, R., and Beta, C. (2024): Bacterial motility in porous media follows an active renewal process with power-law distributed dwell times. arxiv: 2408.02317 
- Carere, G. and Lie, H. C. (2024). Generalised rank-constrained approximations of Hilbert-Schmidt operators on separable Hilbert spaces and applications, arXiv 2408.05104 
- Carere, G. and Lie, H. C. (2024). Optimal low-rank approximations of posteriors for linear Gaussian inverse problems on Hilbert spaces, arXiv 2411.01112 
- Spokoiny, V. (2024). Estimation for SLS models: finite sample guarantees, arXiv:2404.14227 
- Lie, H. C. (2024): Bayesian inference of covariate-parameter relationships for population modelling. ArXiv 2407.09640 
- Tiepner, A. and Ziebell, E. (2024): Parameter estimation in hyperbolic linear SPDEs from multiple measurements. arXiv:2407.13461 
- Ziebell, E. (2024): Non-parametric estimation for the stochastic wave equation. arXiv:2404.18823 
- Albrecht, J. and Reich, S. (2024): Robust parameter estimation for partially observed second-order diffusion processes. arXiv:2406.14738 
- Siobhán Correnty, Melina A. Freitag, Kirk M. Soodhalter (2023). Chebyshev HOPGD with sparse grid sampling for parameterized linear systems. arXiv:2309.14178 
- Kim, J. W. and Mehta, P. G. (2024): Arrow of Time in Estimation and Control: Duality Theory Beyond the Linear Gaussian Model. arXiv 2405.07650 
- Kim, J. W., Taghvaei, A., and Mehta, P. G. (2024): Divergence metrics in the study of Markov and hidden Markov processes. arXiv 2404.15779 
- Cherepanov, V., and Ertel, S. W. (2024): Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows. arXiv: 2405.13691 
- Tienstra, M. (2024). Early Stopping for Ensemble Kalman-Bucy Inversion. arXiv:2403.18353 
- Gottwald, G., Li, F., Marzouk, Y., Reich, S (2024). Stable generative modelling using diffusion maps. arXiv 2401.04372 
- Engbert, R. and Rabe, M. M. (2023). Tutorial on dynamical modeling of eye movements in reading. doi: 10.31234/osf.io/dsvmt 
- Lopopolo, A. and Rabovsky, M. (2023). Tracking lexical and semantic prediction error underlying the N400 using artificial neural network models of sentence processing. doi: 10.1101/2022.11.14.516396 
- Bhandari, D., Pidstrigach, J., and Reich, S. (2023). Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in ReLU Networks. arXiv:2309.04742 
- Spokoiny, V. (2023). Deviation bounds for the norm of a random vector under exponential moment conditions with applications, arXiv:2309.02302 
- Reich, S. (2023): A particle-based Algorithm for Stochastic Optimal Control. arXiv 2311.06906 
- Spokoiny, V. (2023). Sharp deviation bounds and concentration phenomenon for the squared norm of a sub-Gaussian vector, arXiv:2305.07885v1 
- Pasemann, G., Beta C. and Stannat, W. (2023). Stochastic Reaction-Diffusion Systems in Biophysics: Towards a Toolbox for Quantitative Model Evaluation. arXiv: 2307.06655 
- Spokoiny, V. (2023). Nonlinear regression: finite sample guarantees, arXiv:2305.08193 
- Spokoiny, V. (2023). Mixed Laplace approximation for marginal posterior and Bayesian inference in error-in-operator model, arXiv:2305.09336 
- Chen, Y, Huang D.Z., Huang J., Reich, S., and Stuart, A.M. (2023). Sampling via gradient flows in the space of probability measures. arXiv:2310.03597 
- Pidstrigach, J., Marzouk, Y., Reich, S., and Wang, S. (2023). Infinite-Dimensional Diffusion Models. arXiv 2302.10130 
- Liu, S., Reich, S., and Tong, X.T. (2023). Dropout ensemble Kalman inversion for high dimensional inverse problems. arXiv:2308.16784 
- Reiß, M., Strauch, C., and Trottner, L. (2023): Change point estimation for a stochastic heat equation. arXiv:2307.10960 
- Pasemann, G., Beta, C., and Stannat, W. (2023): Stochastic Reaction-Diffusion Systems in Biophysics: Towards a Toolbox for Quantitative Model Evaluation. arXiv:2307.06655 
- Gaudlitz, S. (2023): Non-parametric estimation of the reaction term in semi-linear SPDEs with spatial ergodicity.arXiv:2307.05457 
- Kim, J. W. and Mehta, P. G. (2023). Variance Decay Property for Filter Stability. arXiv 2305.12850 
- Chen, Y, Huang D.Z., Huang J., Reich, S., and Stuart, A.M. (2023). Gradient flows for sampling: Mean-field models, Gaussian approximations and affine invariance. arXiv:2302.11024 
- Cvetkovic, N., Lie, H. C., Bansal, H., and Veroy-Grepl, K. (2023): Choosing observation operators to mitigate model error in Bayesian inverse problems. ArXiv 2301.04863 
- Kim, J.W. and Reich, S. (2023): On forward-backward SDE approaches to continuousßtime minimum variance estimation. arXiv 2304.12727 
- Pidstrigach, J., Marzouk, Y., Reich, S., and Wang., S. (2023). Infinite-dimensional diffusion models for function spaces arXiv:2302.10130 
- Irwin, B. and Reich, S. (2023). EnKSGD: A class of preconditioned black box optimization and inversion algorithms. arXiv:2303.16494. 
- Schwetlick, L. and Reich S. and Engbert R. (2023). Bayesian Dynamical Modeling of Fixational Eye Movements. arXiv:2303.11941. 
- Rabe, M. M., Paape, D., Mertzen, D., Vasishth, S., and Engbert, R. (2023). SEAM: An integrated activation-coupled model of sentence processing and eye movements in reading. arXiv:2303.05221 
- Janák, J. and Reiß, M. (2023): Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements. arXiv:2303.00074v1 
- Kemeth, F., Alonso, S., Echebarria, B., Moldenhawer, T., Beta, C. and Kevrekidis I. (2022). Black and Gray Box Learning of Amplitude Equations: Application to Phase Field Systems. arXiv: 2207.03954 
- Schindler, D., Moldenhawer, T., Beta, C., Huisinga, W. and Holschneider, M. (2022). Three-component contour dynamics model to simulate and analyze amoeboid cell motility. arXiv:2210.12978 
- Reich, S. (2022): Data assimilation: A dynamic homotopy-based coupling approach. arXiv 2209.05279 
- Huang, D.Z., Huang, J., Reich, S., and Stuart, A.M. (2022). Efficient derivative-free Bayesian inference for large-scale inverse problems. arXiv:2204.04386. 
- Gaudlitz, S. and Reiß, M. (2022): Estimation for the reaction term in semi-linear SPDEs under small diffusivity. arXiv:2203.10527 
- Manegueu, A. G., Carpentier, A., & Yu, Y. (2021). Generalized non-stationary bandits. arXiv preprint arXiv:2102.00725 
- Zadorozhnyi, O., Gaillard, P., Gerchinovitz, S., and Rudi, A. (2021): Online nonparametric regression with Sobolev kernels. arxiv: 2102.03594 
- Coghi, M., Torstein, N., Nuesken, N., and Reich, S. (2022). Rough McKean-Vlasov dynamics for robust ensemble Kalman filtering arXiv:2107.06621 
- Lange, T. (2020): Derivation of Ensemble Kalman-Bucy Filters with unbounded nonlinear coefficients. arXiv 2012.07572 
- Pathiraja, S. (2020): L2 convergence of smooth approximations of Stochastic Differential Equations with unbounded coefficients. arXiv 2011.13009 
- Castillo, A. M., de Wiljes, J., Shprits, Y. Y., and Aseev, N. A. (2020). Reconstructing the dynamics of the outerelectron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3Dcode, ESSOAr. doi:10.1002/essoar.10504674. 
- Carpentier, A., Vernade, C., and Abbasi-Yadkori, Y. (2020): The elliptical potential lemma revisited. arXiv: 2010.10182. 
- Seelig, S., Risse, S., and Engbert, R. (2020). Predictive modeling of the influence of parafoveal informationprocessing on eye guidance in reading. doi:10.31234/osf.io/vbmqn 
- Holschneider, M., Ferrat, K., Zöller, G., Molkenthin, C., and Hainzl, S. (2020). Richter b-value maps from local moments of seismicity. arXiv:2010.12298 
- Houdebert, P., Zass, A. (2020), An explicit continuum Dobrushin uniqueness criterion for Gibbs point processes with non-negative pair potentials. arxiv 2009.06352 
- Rastogi, A. and Mathé, P. (2020): Inverse learning in Hilbert scales.arXiv 2002.10208 
- Celisse, A. and Wahl, M. (2020): Analyzing the discrepancy principle for kernelized spectral filter learning algorithms.arXiv: 2004.08436 
- Maier C., Hartung N., Kloft C., Huisinga W., de Wiljes J. (2020): Combining reinforcement learning with data assimilation for individualised dosing policies in oncology. arXiv:2006.01061 
- Zhelavskaya, I., Aseev, N. A., Shprits, Y. Y., and Spasojevi, M. (2020). A combined neural network- and physics-based approach for modeling the plasmasphere dynamics, ESSOAr. doi:10.1002/essoar.10502691.1 
- Duval, C. and Mariucci, E. (2020): Non-asymptotic control of the cumulative distribution function of Lévy processes. arXiv 2003.09281 
- Vernade, C., Carpentier, A., Lattimore, T., Zappella, G., Ermis, B. and Brueckner, M. (2020): Linear Bandits with Stochastic Delayed Feedback. arXiv:1807.02089 
- Spokoiny, V. (2019). Bayesian inference for nonlinear inverse problems. arXiv:1912.12694 
- Lange, T. and Stannat, W. (2019): On the continuous time limit of Ensemble Square Root Filters. arXiv 1910.12493 
- Spokoiny, V., and Panov, M. (2019). Accuracy of Gaussian approximation in nonparametric Bernstein–vonMises theorem. arXiv:1910.06028 
- Nuesken, N. and Reich, S. (2019). Note on Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and Stuart. arXiv:1908.10890 
- Houdebert, P. (2019). Phase transition of the non-symmetric Continuum Potts model. arXiv: 1908.10066 
- Avanesov, V. (2019). How to gamble with non-stationary X-armed bandits and have no regrets. arXiv:1908.07636 
- Avanesov, V. (2019). Structural break analysis in high-dimensional covariance structure. arXiv: 1803.00508 
- Avanesov, V. (2019). Nonparametric Change Point Detection in Regression. arXiv:1903.02603 
- Lefakis, L., Zadorozhnyi, O. and Blanchard, G. (2019): Efficient Regularized Piecewise-Linear Regression Trees. arXiv: 1907.00275 
- Zadorozhnyi, O., Blanchard, G., and Carpentier, A. (2019): Restless dependent bandits with fading memory. arXiv: 1906.10454 
- Blanchard, G., Mathé, P., and Mücke, N. (2019): Lepskii Principle in Supervised Learning. arXiv: 1905.10764 
- Wahl, M. (2019): A note on the prediction error of principal component regression.arXiv: 1811.02998 
- Carpentier, A., Duval, C., and Mariucci, E. (2019): Total variation distance for discretely observed Lévy processes: a Gaussian approximation of the small jumps. arXiv: 1810.02998 
- Duval, C. and Mariucci, E. (2019): Compound Poisson approximation to estimate the Lévy density. arXiv: 1702.08787 
- Jirak, M. and Wahl, M. (2018): Perturbation bounds for eigenspaces under a relative gap condition.arXiv: 1803.03868 
- Pathiraja, S. and van Leeuwen, P.J. (2018). Model uncertainty estimation in data assimilation for multi-scale systems with partially observed resolved variables, Quarterly Journal of the Royal Meteorological Society, under review, arXiv: 1807.09621 
- Jirak, M. and Wahl, M. (2018): Relative perturbation bounds with applications to empirical covariance operators.arXiv: 1802.02869 
- Gribonval, R., Blanchard, G., Keriven, N. and Traonmilin, Y. (2017). Compressive Statistical Learning with Random Feature Moments.arXiv 1706.07180