• Albrecht, J., Opper, M., and Großmann, R. (2024): Inferring Parameter Distributions in Heterogeneous Motile Particle Ensembles: A Likelihood Approach for Second Order Langevin Models. arxiv:2411.08692

  • Datta, A., Beier, S., Pfeifer, V., Großmann, R., and Beta, C. (2024): Bacterial motility in porous media follows an active renewal process with power-law distributed dwell times. arxiv: 2408.02317

  • Riedel, C., Hossen Chowdhury, S., Engbert, R., and Lucke, U. (2024): Perceived Barriers to Open Science among Researchers in Mathematics, Natural Sciences, and Cognitive Sciences. In: Klein, M., Krupka, D., Winter, C., Gergeleit, M., & Martin, L. (Hrsg.), INFORMATIK 2024. Gesellschaft für Informatik, Bonn. (S. 2139-2151). doi: 10.18420/INF2024_186

  • Bhandari, D., Pidstrigach, J., and Reich, S. (2024): Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in ReLU Networks, Foundations of Data Science, Foundations of Data Science, published online doi:10.3934/fods.2024040arXiv:2309.04742

  • Lopopolo, A. and Rabovsky, M. (2024): Tracking lexical and semantic prediction error underlying the N400 using artificial neural network models of sentence processing, Neurobiology of Language, 5 (1): 136–166, doi:10.1162/nol_a_00134bioRxiv 2022.11.14.516396

  • Castillo, A. M., Shprits, Y. Y., Aseev, N. A., Smirnov, A., Drozdov, A., Cervantes, S., et al. (2024): Can we intercalibrate satellite measurements by means of data assimilation? An attempt on LEO satellites. Space Weather, 22, e2023SW003624. doi: 10.1029/2023SW003624

  • Chen, Y., Huang, D.Z., Huang, J., Reich, S., and Stuart, A.M. (2024): Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows. Inverse Problems, doi:10.1088/1361-6420/ad847barXiv:2406.17263

  • Schindler, D., Moldenhawer, T., Beta, C., Huisinga, W. and Holschneider, M. (2024): Three-component contour dynamics model to simulate and analyze amoeboid cell motility in two dimensions. PLoS ONE, 19(1):e0297511, doi: 10.1371/journal.pone.0297511

  • Sadhu, R.K., Luciano, M., Xi, W., Martinez-Torres, C., Schröder, M., Blum, C., Tarantola, M., Villa, S., Penic, S., Iglic, A., Beta, C., Steinbock, O., Bodenschatz, E., Ladoux, B., Gabriele S. and Gov, N.S. (2024): A minimal physical model for curvotaxis driven by curved protein complexes at the cell's leading edge. PNAS, 121(12):e2306818121, doi: 10.1073/pnas.2306818121

  • Carere, G. and Lie, H. C. (2024). Generalised rank-constrained approximations of Hilbert-Schmidt operators on separable Hilbert spaces and applications, arXiv 2408.05104

  • Carere, G. and Lie, H. C. (2024). Optimal low-rank approximations of posteriors for linear Gaussian inverse problems on Hilbert spaces, arXiv 2411.01112

  • Winkler, L., Richter, L. and Opper, M. (2024): Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models, Proceedings of the 41st International Conference on Machine Learning, 235, 53017-53038, arXiv:2405.03549

     

     

  • Daems, R., Opper, M., Crevecoeur, G., and Birdal, T. (2024): Variational Inference for SDEs Driven by Fractional Noise, The Twelfth International Conference on Learning Representations, arXiv:2310.12975

     

     

  • Spokoiny, V. (2024). Estimation for SLS models: finite sample guaranteesarXiv:2404.14227

  • Cvetkovic, N. and Lie, H. C. and Bansal, H. and Veroy-Grepl, K. (2024): Choosing observation operators to mitigate model error in Bayesian inverse problems. SIAM/ASA Journal of Uncertainty Quantification 12 (3):723-758. ArXiv 2301.04863doi: 10.1137/23M1602140

  • Stankewitz, B. (2024): Early stopping for L2-boosting in high-dimensional linear models. Annals of Statistics 52 (2):491-518, arXiv:2210.07850.

  • Lie, H. C. (2024). Bayesian inference of covariate-parameter relationships for population modelling. ArXiv 2407.09640

  • Tiepner, A. and Ziebell, E. (2024). Parameter estimation in hyperbolic linear SPDEs from multiple measurementsarXiv:2407.13461

  • Ziebell, E. (2024). Non-parametric estimation for the stochastic wave equationarXiv:2404.18823

  • V. Pfeifer, V. Muraveva, and Beta, C. (2024): Flagella and Cell Body Staining of Bacteria with Fluorescent Dyes. In: Cell Motility and Chemotaxis: Methods and Protocols, edited by Carsten Beta and Cristina Martinez-Torres (Springer, 2024), p.79-85.

  • Zöller, G. (2024): Recurrence times of large earthquakes: assimilating the effect of seismic coupling into a renewal model. Bulletin of the Seismological Society of America, Vol. 114(3),1754-1761. doi:10.1785/0120230257

  • R. Großmann et al. (2024): Non-Gaussian Displacements in Active Transport on a Carpet of Motile Cells. Phys. Rev. Lett. 132(8) 088301. doi: 10.1103/PhysRevLett.132.088301

  • Datta, A., Beta, C. and Großmann, R. (2024): The random walk of intermittently self-propelled particles. arXiv:2406.15277 (2024)

  • Albrecht, J. and Reich, S. (2024): Robust parameter estimation for partially observed second-order diffusion processes. arXiv:2406.14738

  • Irwin, B., and Reich, S. (2024): EnKSGD: A class of preconditioned black box optimization and inversion algorithmsSIAM Journal on Scientific Computing, 46, A2101-A2122. doi: 10.1137/23M1561142

  • Quinn, P. D., Landmann, M. S., Davis, T., Freitag, M. A., Gazzola, S., and Dolgov, S. (2024): Optimal Sparse Energy Sampling for X-ray Spectro-Microscopy: Reducing the X-ray Dose and Experiment Time Using Model Order Reduction. Chem. Biomed. Imaging 2024. doi: 10.1021/cbmi.3c00116

  • Kaya, A. and Freitag, M. A. (2024). Low-rank solutions to the stochastic Helmholtz equation. Journal of Computational and Applied Mathematics. doi: 10.1016/j.cam.2024.115925

  • Siobhán Correnty, Melina A. Freitag, Kirk M. Soodhalter (2023). Chebyshev HOPGD with sparse grid sampling for parameterized linear systemsarXiv:2309.14178

  • Lie, H. C. and Rudolf, D. and Sprungk, B. and Sullivan, T. J. (2023). Dimension-independent Markov chain Monte Carlo on the sphere. Scandinavian Journal of Statistics 50 (4):1818-1858. ArXiv: 2112.12185  

  • G. Blanchard, A. Carpentier, and O. Zadorozhnyi (2024): Moment inequalities for sums of weakly dependent random fields. In: Bernoulli 30.3, pp. 2501–2520. doi: 10.3150/23-BEJ1682.

  • Kim, J. W. and Mehta, P. G. (2024): Arrow of Time in Estimation and Control: Duality Theory Beyond the Linear Gaussian ModelarXiv 2405.07650

  • Kim, J. W., Joshi, A. A. and Mehta, P. G. (2024): Backward Map for Filter Stability AnalysisarXiv 2405.01127

  • Kim, J. W., Taghvaei, A. and Mehta, P. G. (2024): Divergence metrics in the study of Markov and hidden Markov processesarXiv 2404.15779

  • Kim, J. W. and Mehta, P. G. (2024): Variance Decay Property for Filter Stability. IEEE Transactions on Automatic Control, doi: 10.1109/TAC.2024.3413573

  • Janák, J. and Reiß, M. (2024): Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements. To appear in: Stochastic Processes and their Applications doi:10.1016/j.spa.2024.104385

  • Cherepanov, V., and Ertel, S. W. (2024): Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows. arXiv: 2405.13691

  • Tienstra, M. (2024). Early Stopping for Ensemble Kalman-Bucy Inversion. arXiv:2403.18353

  • Ertel, S.E. and Stannat, W. (2024): Analysis of the ensemble Kalman-Bucy filter for correlated observation noise. Ann. Appl. Probab. 34(1B), 1072-1107, doi: 10.1214/23-AAP1985.

  • Haas, B., Shprits, Y. Y., Wutzig, M., Szabó-Roberts, M., García Peñaranda, M., Castillo Tibocha, A. M., Himmelsbach, J., Wang, D., Miyoshi, Y., Kasahara, S., Keika, K., Yokota, S., Shinohara, I., and Hori, T. (2024). Global validation of data-assimilative electron ring current nowcast for space weather applications.Sci Rep 14, 2327. doi: 10.1038/s41598-024-52187-0.

  • Gottwald, G., Li, F., Marzouk, Y., Reich, S (2024). Stable generative modelling using diffusion maps. arXiv 2401.04372

  • König, J., Pfeffer, M. and Stoll, M. (2023). Efficient training of Gaussian processes with tensor product structure. arXiv 2312.15305.

  • Pathiraja, S. (2023): L2 convergence of smooth approximations of Stochastic Differential Equations with unbounded coefficients. Stochastic Analysis and Applications, 42, 354-369. doi: 0.1080/07362994.2023.2260863

  • Coghi, M., Torstein, N., Nuesken, N., and Reich, S. (2023). Rough McKean-Vlasov dynamics for robust ensemble Kalman filtering, The Annals of Applied Probability, Volume 33, 5693-5752 doi: 10.1214/23-AAP1957

  • Boege, T., Fritze, R., Görgen, C., Hanselman, J., Iglezakis, D., Kastner, L., Koprucki, T., Krause, T. H., Lehrenfeld, C., Polla, S., Reidelbach, M., Riedel, C., Saak, J., Schembera, B., Tabelow, K., & Weber, M. (2023). Research-data management planning in the German mathematical community. European Mathematical Society Magazine. doi: 10.4171/mag/152

  • Engbert, R. and Rabe, M. M. (2023). Tutorial on dynamical modeling of eye movements in reading. doi: 10.31234/osf.io/dsvmt

     

  • Lopopolo, A. and Rabovsky, M. (2023). Tracking lexical and semantic prediction error underlying the N400 using artificial neural network models of sentence processing. doi: 10.1101/2022.11.14.516396

  • Bhandari, D., Pidstrigach, J., and Reich, S. (2023). Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in ReLU Networks. arXiv:2309.04742 

  • Spokoiny, V. (2023). Deviation bounds for the norm of a random vector under exponential moment conditions with applicationsarXiv:2309.02302

  • Stankewitz, B. and Mücke, N. and Rosasco, L. (2023). From inexact optimization to learning via gradient concentration. Computational Optimization and Applications 84:265-294. arXiv:2106.05397.

  • Reich, S. (2023): A particle-based Algorithm for Stochastic Optimal ControlarXiv 2311.06906

  • Boys, B., Girolami, M., Pidstrigach, J., Reich, S., Mosca, A., and Akyildiz, O.D. (2023). Tweedie Moment Projected Diffusions For Inverse Problems, Transactions on Machine Learning Research, arXiv 2310.06721

  • Spokoiny, V. (2023). Sharp deviation bounds and concentration phenomenon for the squared norm of a sub-Gaussian vectorarXiv:2305.07885v1

     

  • Pasemann, G., Beta C. and Stannat, W. (2023). Stochastic Reaction-Diffusion Systems in Biophysics: Towards a Toolbox for Quantitative Model Evaluation. arXiv: 2307.06655

  • Spokoiny, V. (2023). Dimension free non-asymptotic bounds on the accuracy of high dimensional Laplace approximation, SIAM/ASA Journal on Uncertainty Quantification, 11, 1044-1068, arXiv:2204.11038

  • Spokoiny, V. (2023). Inexact Laplace approximation and the use of posterior mean in Bayesian inference, Bayesian Anal., 1-28, doi:10.1214/23-BA1391

  • Spokoiny, V. (2023). Nonlinear regression: finite sample guaranteesarXiv:2305.08193

  • Spokoiny, V. (2023). Mixed Laplace approximation for marginal posterior and Bayesian inference in error-in-operator modelarXiv:2305.09336

  • Riedel, C., Wiepke, A., Jacob, B., Hartmann, N., and Ulrike, L. (2023). Recommendations for Using Data Management Plans in Academic Research Data Management Training. 10. Fachtagung Hochschuldidaktik Informatik (HDI) 2023 - Conference Proceedings, 145–152. doi: 10.5281/zenodo.10255524.

  • Chen, Y, Huang D.Z., Huang J., Reich, S., and Stuart, A.M. (2023). Sampling via gradient flows in the space of probability measures. arXiv:2310.03597

  • Beta, C., Edelstein-Keshet, L., Gov, N. and Yochelis, A. (2023). From actin waves to mechanism and back: How theory aids biological understanding. eLife, 12:e87181, doi: 10.7554/eLife.87181

  • Pidstrigach, J., Marzouk, Y., Reich, S., and Wang, S. (2023). Infinite-Dimensional Diffusion Models. arXiv 2302.10130

  • Freitag, M.A., Nicolaus, J.M., and Redmann, M. (2023). Model order reduction methods applied to neural network training. Proceedings in Applied Mathematics and Mechanics, e202300078. doi: 10.1002/pamm.202300078

  • Freitag, M.A., Kriz, P., Mach, T, and Nicolaus, J.M. (2023). Can one hear the depth of the water? Proceedings in Applied Mathematics and Mechanics, e202300122. doi: 10.1002/pamm.202300122

  • König, J. and Freitag, M.A. (2023). Time-Limited Balanced Truncation for Data Assimilation Problems. Journal of Scientific Computing, Volume 97, Number 47. doi: 10.1007/s10915-023-02358-4

  • König, J. and Freitag, M.A. (2023). Time-limited Balanced Truncation within Incremental Four-Dimensional Variational Data Assimilation. Proceedings in Applied Mathematics and Mechanics, e202300019. doi: 10.1002/pamm.202300019

  • Liu, S., Reich, S., and Tong, X.T. (2023). Dropout ensemble Kalman inversion for high dimensional inverse problems. arXiv:2308.16784

  • Reiß, M. and Strauch, C. and Trottner, L. (2023). Change point estimation for a stochastic heat equationarXiv:2307.10960

  • Reich, S. (2024): Data Assimilation: A Dynamic Homotopy-Based Coupling Approach. In: Chapron, B., Crisan, D., Holm, D., Mémin, E., Radomska, A. (eds) Stochastic Transport in Upper Ocean Dynamics II. STUOD 2022. Mathematics of Planet Earth, vol 11. Springer, Cham. doi: 10.1007/978-3-031-40094-0_12

  • Zöller, G. and Hainzl, S. (2023). Seismicity scenarios for the remaining operating period of the gas field in Groningen, Netherlands. Seismological Research Letters, Vol. 94(2A), 805-812. doi:10.1785/0220220308

  • Pasemann, G. and Beta, C. and Stannat, W. (2023). Stochastic Reaction-Diffusion Systems in Biophysics: Towards a Toolbox for Quantitative Model EvaluationarXiv:2307.06655

  • Gaudlitz, S. (2023). Non-parametric estimation of the reaction term in semi-linear SPDEs with spatial ergodicity.arXiv:2307.05457

  • Sharma, S., Hainzl, S., and Zöller, G. (2023): Seismicity parameter dependence on mainshock induced co-seismic stress. Geophysical Journal International, Vol. 135(1), 509-517. doi:10.1093/gji/ggad201

  • Maleki Asayesh,B., Hainzl, S., Zöller, G. (2023): Depth‐Dependent Aftershock Trigger Potential Revealed by 3D‐ETAS Modeling. Journal of Geophysical Research, Vol. 128(6), e2023JB026377. doi:10.1029/2023JB026377

  • Hijazi, S., Freitag, M. A., and Landwehr, N. (2023). POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier-Stokes equations. Adv. Model. Simul. Eng. Sci. doi: 10.1186/s40323-023-00242-2

  • Altmeyer, R., Cialenco, I. and Pasemann, G. (2023): Parameter estimation for semilinear SPDEs from local measurements. Bernoulli 29(3): 2035-2061. doi:10.3150/22-BEJ1531

  • Cialenco, I. and Kim, H.-J. and Pasemann, G. (2023): Statistical analysis of discretely sampled semilinear SPDEs: a power variation approach. Stoch PDE: Anal Comp doi:10.1007/s40072-022-00285-3

  • Kim, J. W. and Mehta, P. G. (2023): Duality for Nonlinear Filtering II: Optimal Control. IEEE Transactions on Automatic Control. doi: 10.1109/TAC.2023.3279208

  • Kim, J. W. and Mehta, P. G. (2023): Duality for Nonlinear Filtering I: Observability. IEEE Transactions on Automatic Control. doi: 10.1109/TAC.2023.3279206

  • Kim, J. W. and Mehta, P. G. (2023). Variance Decay Property for Filter StabilityarXiv 2305.12850

  • Ayanbayev, B., Klebanov, I., Lie, H.C., and Sullivan, T.J. (2021). Gamma-convergence of Onsager–Machlup functionals: II. convergence of Onsager–Machlup functionals: II. Infinite product measures on Banach spaces. Inverse Problems, Volume 38, Number 2. doi:10.1088/1361-6420/ac3f82.

  • Redmann, M. and Freitag, M.A. (2021). Optimization based model order reduction for stochastic systems. Appl. Math. Comput., 398. doi: 10.1016/j.amc.2020.125783

  • Lie, H.C., Stahn, M. and Sullivan, T.J. (2022). Randomised one-step time integration methods for deterministic operator differential equations. Calcolo, Volume 59, Number 13. doi:10.1007/s10092-022-00457-6.

  • Freitag, M.A. and Reich, S. (2022). Datenassimilation: Die nahtlose Verschmelzung von Daten und Modellen. Mitteilungen der Deutschen Mathematiker-VereinigungVerlag, De GruyterSeiten, 108‒112, Band 30. doi: 10.1515/dmvm-2022-0037

  • Chen, Y, Huang D.Z., Huang J., Reich, S., and Stuart, A.M. (2023). Gradient flows for sampling: Mean-field models, Gaussian approximations and affine invariance. arXiv:2302.11024

  • Cvetkovic, N. and Lie, H. C. and Bansal, H. and Veroy-Grepl, K. (2023). Choosing observation operators to mitigate model error in Bayesian inverse problems. ArXiv 2301.04863

  • Kim, J.W. and Reich, S. (2023): On forward-backward SDE approaches to continuousßtime minimum variance estimationarXiv 2304.12727

  • Pidstrigach, J., Marzouk, Y., Reich, S., and Wang., S. (2023). Infinite-dimensional diffusion models for function spaces arXiv:2302.10130

  • Irwin, B. and Reich, S. (2023). EnKSGD: A class of preconditioned black box optimization and inversion algorithmsarXiv:2303.16494.

  • Mach, T. and Freitag, M.A. (2023). Solving the Parametric Eigenvalue Problem by Taylor Series and Chebyshev ExpansionarXiv 230212.03661

  • Schwetlick, L. and Reich S. and Engbert R. (2023). Bayesian Dynamical Modeling of Fixational Eye MovementsarXiv:2303.11941.

  • Rabe, M. M., Paape, D., Mertzen, D., Vasishth, S., and Engbert, R. (2023). SEAM: An integrated activation-coupled model of sentence processing and eye movements in readingarXiv:2303.05221

  • Janák, J. and Reiß, M. (2023). Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements. arXiv:2303.00074v1

  • Dietrich, F., Makeev, A., Kevrekidis, G., Evangelou, N., Bertalan, T., Reich, S., and Kevrekidis, I.G. (2023). Learning effective stochastic differential equations from microscopic simulations: combining stochastic numerics and deep learning. Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 33, 023121. doi: 10.1063/5.0113632arXiv:2106.09004

  • Kemeth, F., Alonso, S., Echebarria, B., Moldenhawer, T., Beta, C. and Kevrekidis I. (2023). Black and Gray Box Learning of Amplitude Equations: Application to Phase Field Systems. Phys. Rev. E, 107:025305 doi: 10.1103/PhysRevE.107.025305

  • Yadav, H., Smith, G., Reich, S., and Vasishth, S. (2023). Number feature distortion modulates cue-based retrieval in reading. Journal of Memory and Language, Vol. 129, 104400. doi: 10.1016/j.jml.2022.104400

  • Kemeth, F., Alonso, S., Echebarria, B., Moldenhawer, T., Beta, C. and Kevrekidis I. (2022). Black and Gray Box Learning of Amplitude Equations: Application to Phase Field Systems. arXiv: 2207.03954

  • Moldenhawer, T., Moreno, E., Schindler, D., Flemming, S., Holschneider, M., Huisinga, W., Alonso, S. and Beta, C. (2022). Spontaneous transitions between amoeboid and keratocyte-like modes of migration. Front. Cell Dev. Biol., 10:898351. doi:10.3389/fcell.2022.898351

  • Schindler, D., Moldenhawer, T., Beta, C., Huisinga, W. and Holschneider, M. (2022). Three-component contour dynamics model to simulate and analyze amoeboid cell motility. arXiv:2210.12978

  • Yochelis, A., Flemming, S. and Beta, C. (2022). Versatile Patterns in the Actin Cortex of Motile Cells: Self-Organized Pulses Can Coexist with Macropinocytic Ring-Shaped Waves. Phys. Rev. Lett., 129:088101. doi: 10.1103/PhysRevLett.129.088101

  • Schwetlick, L.; Backhaus, D. & Engbert, R. (2022). A dynamical scan-path model for task-dependence during scene viewing. Psychological Review, American Psychological Association (APA). doi: 10.1037/rev0000379

  • Vilk, O., Aghion, E., Avgar, T., Beta, C., Nagel, O., Sabri, A., Sarfati, R., Schwartz, D., Weiss, M., Krapf, D., Nathan, R., Metzler, R. and Assaf, M. (2022) Unravelling the origins of anomalous diffusion: From molecules to migrating storks. Phys. Rev. Research, 4:033055. doi: 10.1103/PhysRevResearch.4.033055

  • Riedel, C., Geßner, H., Seegebrecht, A., Ayon, S. I., Chowdhury, S. H., Engbert, R. and Lucke, U. (2022). Including Data Management in Research Culture Increases the Reproducibility of Scientific Results. In: Demmler, D., Krupka, D. & Federrath, H. (Hrsg.), INFORMATIK 2022. Gesellschaft für Informatik, Bonn. (S. 1341-1352). doi: 10.18420/inf2022_114

  • Moreno, E., Grossmann, R., Beta, C., and Alonso, S. (2022). From Single to Collective Motion of Social Amoebae: A Computational Study of Interacting Cells. Front. Phys., 9:750187. doi: 10.3389/fphy.2021.750187

  • Maoutsa, D. and Opper, M. (2022). Deterministic particle flows for constraining stochastic nonlinear systems, Phys. Rev. Res., 4, 043035, doi:10.1103/PhysRevResearch.4.043035

  • Lie, H. C. and Stahn, M. and Sullivan, T.J. (2022). Randomised one-step time integration methods for deterministic operator differential equations. Calcolo, Volume 59, Number 13, ArXiv 2103.16506doi: 10.1007/s10092-022-00457-6.

  • Gaucher, S., Carpentier, A., & Giraud, C. (2022). The price of unfairness in linear bandits with biased feedback. Advances in Neural Information Processing Systems, 35, 18363-18376.

  • Reich, S. (2022): Data assimilation: A dynamic homotopy-based coupling approacharXiv 2209.05279

  • Winkler, L., Ojeda, C., and Opper, M. (2022). A Score-Based Approach for Training Schrödinger Bridges for Data Modelling, Entropy, 25, 316, doi:10.3390/e25020316

  • Huang, D.Z., Huang, J., Reich, S., and Stuart, A.M. (2023). Efficient derivative-free Bayesian inference for large-scale inverse problems. Inverse Probelms, Vol. 38, 125006. doi: 10.1088/1361-6420/ac99faarXiv:2204.04386

  • Pidstrigach, J. (2022). Score-based generative models detect manifolds. In: Advances in Neural Information Processing Systems, Volume 35. arXiv:2206.01018

  • Pidstrigach, J. (2022). Convergence of preconditioned Hamiltonian Monte Carlo on Hilbert spaces, IMA Journal of Numerical Analysis. doi: 10.1093/imanum/drac052arXiv:2011.08578

  • Reich, S. (2022). Frequentist perspective on robust parameter estimation using the ensemble Kalman filter In: Chapron, B., Crisan, D., Holm, D., Mémin, E., Radomska, A. (eds) Stochastic Transport in Upper Ocean Dynamics. STUOD 2021. Mathematics of Planet Earth, vol 10. Springer, Cham. doi: 10.1007/978-3-031-18988-3_15 arXiv:2201.000611

  • Calvello, E., Reich, S. and Stuart A.M.(2022): Ensemble Kalman methods: A mean field approacharXiv 2209.11371

  • Pfeifer, V., Beier, S., Alirezaeizanjani, Z., and Beta, C. (2022): Role of the two flagellar stators in swimming motility of Pseudomonas putida. Mbio 13(6) e02182-22, doi: 10.1128/mbio.02182-22.

  • Alqahtani, A., Mach, T., and Reichel, L. (2023). Solution of Ill-posed Problems with Chebfun. Numerical Algorithms (2023). doi:10.1007/s11075-022-01390-z​​​​​​​, arXiv 2007.16137

  • Zöller, G. (2022): A note on the estimation of the maximum possible earthquake magnitude based on extreme value theory for the Groningen gas field. Bulletin of the Seismological Society of America, Vol. 112(4), 1825-1831. doi:10.1785/0120210307

  • Boether, M., Kißig, O., Taraz, M., Cohen, S., Seidel, K., and Friedrich, T. (2022). Whats Wrong with Deep Learning in Tree Search for Combinatorial Optimization. In: International Conference on Learning Representations. arXiv:2201.10494

  • Altmeyer, R., Bretschneider, T., Janák, J. and Reiß, M. (2022): Parameter Estimation in an SPDE Model for Cell Repolarisation. SIAM/ASA Journal on Uncertainty Quantification 10(1), 179-199. doi:10.1137/20M1373347

  • Pidstrigach, J. and Reich, S. (2022). Affine-invariant ensemble transform methods for logistic regression. Foundation of Computational Mathematics, 22. doi:10.10007/s10208-022-09550-2.

  • Molkenthin, C., Donner, C., Reich, S., Zöller, G., Hainzl, S., Holschneider, M. and Opper, M. (2022): GP-ETAS: Semiparametric Bayesian inference for the spatio-temporal Epidemic Type Aftershock Sequence model. Statistics and Computation, Vol. 32, 29. doi:10.1007/s11222-022-10085-3.

  • Huang, D.Z., Huang, J., Reich, S., and Stuart, A.M. (2022). Efficient derivative-free Bayesian inference for large-scale inverse problemsarXiv:2204.04386.

  • Engbert, R., Rabe, M. M., Schwetlick, L., Seelig, S. A., Reich, S., Vasishth, S. (2022). Data assimilation in dynamical cognitive science. Trends in Cognitive Sciences, 26(2), 99-102. doi:10.1016/j.tics.2021.11.006.

  • Malem-Shinitski, N., Ojeda, C., and Opper, M. (2022). Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects. Entropy, 24(3), 356. doi: 10.3390/e24030356.

  • Mach, T., Reichel, L., and Van Barel, M. (2023). Adaptive cross approximation for Tikhonov regularization in general form. Numerical Algorithms. doi:10.1007/s11075-022-01395-8, arXiv 2204.05740

  • Gaudlitz, S. and Reiß, M. (2022). Estimation for the reaction term in semi-linear SPDEs under small diffusivity. arXiv:2203.10527

  • Pathiraja, S., and van Leeuwen, P. J. (2022): Multiplicative non-Gaussian model error estimation in data assimilation. Journal of Advances in Modeling Earth Systems, 14, e2021MS002564. doi: 10.1029/2021MS002564

  • Ruchi, S., Dubinkina, S. and de Wiljes, J. (2021): Fast hybrid tempered ensemble transform filter for Bayesian elliptical problems via Sinkhorn approximation. Nonlinear Processes in Geophysics, 28(1): 23-41. doi: 10.5194/npg-28-23-2021

  • Birzhan Ayanbayev, Ilja Klebanov, Han Cheng Lie and T J Sullivan (2021). Gamma-convergence of Onsager–Machlup functionals: I. With applications to maximum a posteriori estimation in Bayesian inverse problems. Inverse Problems, Volume 38, Number 2, doi:10.1088/1361-6420/ac3f81.

  • Ba, Y., de Wiljes, J., Oliver, D.S., and Reich, S. (2021). Randomized maximum likelihood based posterior sampling, Computational Geosciences. doi: 10.1007/s10596-021-10100-yarXiv:2101.03612

  • Lange, T. (2021): Derivation of Ensemble Kalman-Bucy Filters with unbounded nonlinear coefficients. Nonlinearity, Vol. 35, 1061. doi: 10.1088/1361-6544/ac4337

  • Pathiraja, S., Reich, S., and Stannat, W. (2021): McKean-Vlasov SDEs in nonlinear filtering. SIAM Journal on Control and Optimization.  doi:10.1137/20M1355197arXiv 2007.12658

  • Castillo Tibocha, A. M., de Wiljes, J., Shprits, Y. Y., & Aseev, N. A. (2021). Reconstructing the dynamics of the outer electron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3D code. Space Weather, 19, e2020SW002672, doi: 10.1029/2020SW002672

  • Zhelavskaya, I. S., Aseev, N. A., and Shprits, Y. Y. (2021): A combined neural network- and physics-based approach for modeling plasmasphere dynamics. Journal of Geophysical Research: Space Physics, 126, e2020JA028077, doi: 10.1029/2020JA028077

  • Gottwald, G.A., and Reich, S. (2021). Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 31, 101103, doi:10.1063/5.0066080 arXiv:2108.03561

  • Pathiraja, S. and Stannat, W. (2021): Analysis of the feedback particle filter with diffusion map based approximation of the gain. Foundations of Data Science. doi:10.3934/fods.2021023 arXiv:2109.02761

  • Schindler, D., Moldenhawer, T., Stange, M., Lepro, V., Beta, C., Holschneider, M., and Huisinga, W. (2021). Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows. PLoS Comput Biol 17(8): e1009268. doi:journal.pcbi.1009268

  • R. De Heide, J. Cheshire, P. M ́enard, and A. Carpentier.Bandits with many optimal arms. In: Advances in Neural Information Processing Systems 34 (2021), pp. 22457–22469, 2021.

  • Geßner, H. (2021). Transparently Safeguarding Good Research Data Management with the Lean Process Assessment Model. In: E-Science-Tage 2021: Share Your Research Data. Heidelberg. DOI: 10.11588/heidok.00029719

  • Rabe, M. M., Chandra, J., Krügel, A., Seelig, S. A., Vasishth, S., & Engbert, R. (2021). A Bayesian approach to dynamical modeling of eye-movement control in reading of normal, mirrored, and scrambled texts. Psychological Review doi:10.1037/rev0000268, psyarXiv

  • Pasemann, G. and Flemming, S. and Alonso, S. and Beta, C. and Stannat, W. (2021): Diffusivity Estimation for Activator-Inhibitor Models: Theory and Application to Intracellular Dynamics of the Actin Cytoskeleton. Journal of Nonlinear Science 31, 59, doi:10.1007/s00332-021-09714-4  arXiv 2005.09421

  • Gottwald, G., and Reich, S. (2021). Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation. Physica D, Vol. 423, 132911. doi:10.1016/j.physd.2021.132911. arXiv:2007.07383

  • Wormell, C.L. and Reich, S. (2021): Spectral convergence of diffusion maps: Improved error bounds and an alternative normalisation. SIAM Journal Numerical Analysis,59, 1687-1734. arXiv 2006.02037; doi:10.1137/30M1344093

  • Hartung, N., Wahl, M., Rastogi, A., and Huisinga, W. (2021). Nonparametric goodness-of-fit tests for parametric covariate models in pharmacometric analyses. CPT Pharmacometrics & Systems Pharmacology 10: 564-576. ArXiv 2011.07539 DOI

  • Blanchard, G., Deshmukh, A., Dogan, U., Lee, G. and Scott, C. (2021). Domain Generalization by Marginal Transfer Learning. Journal of Machine Learning Research 22(2):1−55. Open Access

  • Zadorozhnyi, O. and Gaillard, P. and Gerchinovitz, S. and Rudi, A. (2021). Online nonparametric regression with Sobolev kernels. arxiv: 2102.03594

  • Lange, T. and Stannat W. (2021): Mean field limit of Ensemble Square Root filters - discrete and continuous time, Foundations of Data Science. doi: 10.3934/fods.2021003

  • Reich, S. and Weissmann, S. (2021). Fokker-Planck particle systems for Bayesian inference: Computational approaches, SIAM/ASA J. Uncertainty Quantification, 9(2), 446–482. doi: 10.1137/19M1303162arXiv:1911.10832

  • Coghi, M., Torstein, N., Nuesken, N., and Reich, S. (2022). Rough McKean-Vlasov dynamics for robust ensemble Kalman filtering arXiv:2107.06621

  • Lange, T. (2020): Derivation of Ensemble Kalman-Bucy Filters with unbounded nonlinear coefficients. arXiv 2012.07572

  • Schwetlick, L., Rothkegel, L.O.M., Trukenbrod, H.A., Engbert, R. (2020). Modeling the effects of perisaccadic attention on gaze statistics during scene viewing. Communications Biology, 3, 727. doi: 10.1038/s42003-020-01429-8

  • Moreno, E., Flemming, S., Font, F., Holschneider, M., Beta, C., and Alonso, S. (2020). Modeling cell crawlingstrategies with a bistable model: From amoeboid to fan-shaped cell motion. Physica D, 412:132591, doi:10.1016/j.physd.2020.132591

  • Pathiraja, S. (2020): L2 convergence of smooth approximations of Stochastic Differential Equations with unbounded coefficients. arXiv 2011.13009

  • Castillo, A. M., de Wiljes, J., Shprits, Y. Y., and Aseev, N. A. (2020). Reconstructing the dynamics of the outerelectron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3Dcode, ESSOAr. doi:10.1002/essoar.10504674.

  • Makowski, S., Jäger, L. A., Prasse, P., & Scheffer, T. (2020). Biometric identification and presentation-attack detection using micro- and macro-movements of the eyes. International Joint Conference on Biometrics (IJCB), in press. Preprint: [1]

  • Prasse, P., Jäger, L. A., Makowski, S., Feuerpfeil, M., & Scheffer, T. (2020): On the Relationship between Eye Tracking Resolution and Performance of Oculomotoric Biometric Identification. Procedia Computer Science, 176, 2088-2097. doi: 10.1016/j.procs.2020.09.245

  • Makowski, S., Jäger, L. A., Schwetlick, L., Trukenbrod, H., Engbert, R., & Scheffer, T. (2020): Discriminative Viewer Identification using Generative Models of Eye Gaze. Procedia Computer Science, 176, 1348-1357. doi: 10.1016/j.procs.2020.09.144

  • Lange, T. and Stannat, W. (2020): On the continuous time limit of the Ensemble Kalman Filter. Mathematics of Computation, 40(327), 233-265. arXiv 1901.05204v1; doi:10.1090/mcom/3588

  • Carpentier, A., Vernade, C., and Abbasi-Yadkori, Y. (2020). The elliptical potential lemma revisited. arXiv: 2010.10182.

  • Seelig, S., Risse, S., and Engbert, R. (2020). Predictive modeling of the influence of parafoveal informationprocessing on eye guidance in reading.  doi:10.31234/osf.io/vbmqn

  • Saggioro, E., de Wiljes, J., Kretschmer, M., and Runge, J. (2020). Reconstructing regime-dependent causalrelationships from observational time series. Chaos, 30(11):113115–1–113115–22, doi:10.1063/5.0020538

  • Engbert, R. (2021). Dynamical Models in Neurocognitive Psychology. Computational Approaches to Cognitionand Perception. Springer Nature. (in press)

  • Holschneider, M., Ferrat, K., Zöller, G., Molkenthin, C., and Hainzl, S. (2020). Richter b-value maps from local moments of seismicityarXiv:2010.12298

  • Altmeyer, R. and Reiß, M. (2020): Nonparametric estimation for linear SPDEs from local measurements. Annals of Applied Probability, to appear. arXiv 1903.06984

  • M. Stange, T. Moldenhawer, and C. Beta (2020): Fluorescent (C)LSM image sequences of dictyostelium discoideum (Ax2-LifeAct mRFP) for cell track and cell contour analysis. doi:10.5061/dryad. b5mkkwhbd.

  • Gaidzik, F., Pathiraja, S., Saalfeld, S., Stucht, D., Speck, O., Thevenin, D., Janiga, G. (2020). Hemodynamic Data Assimilation in a Subject-specific Circle of Willis Geometry. Clinical Neuroradiology, doi:10.1007/s00062-020-00959-2

  • Reich, S., and Rozdeba, P. J. (2020): Posterior contraction rates for non-parametric state and drift estimation. Foundation of Data Science, Vol. 2, 333-349. doi:10.3934/fods.2020016. arXiv:2003.09219

  • Houdebert, P., Zass, A. (2020), An explicit continuum Dobrushin uniqueness criterion for Gibbs point processes with non-negative pair potentials. arxiv 2009.06352

  • Malem-Shinitski, N., Opper, M., Reich, S., Schwetlick, S., Seelig S. A., and Engbert, R (2020): A Mathematical Model of Exploration and Exploitation in Natural Scene Viewing. PLoS Computational Biology. doi:10.1371/journal.pcbi.1007880

  • Rastogi, A. (2020): Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems. Communications on Pure & Applied Analysis 19(8): 4111-4126. ArXiv 2002.01303DOI

  • Rastogi, A., Blanchard, G. and Mathé, P. (2020): Convergence analysis of Tikhonov regularization for non-linear statistical inverse learning problems. Electronic Journal of Statistics 14(2): 2798-2841. ArXiv 1902.05404v2DO

  • Milbradt, C. and Wahl, M. (2020). High-probability bounds for the reconstruction error of PCA. Statist. Probab. Lett. 161. ArXiv 1909.10787

  • Reiß, M. and Wahl, M. (2020). Non-asymptotic upper bounds for the reconstruction error of PCA. Ann. Stat. 48(2): 1098-1123. arXiv 1609.03779

  • Rastogi, A. (2019). Tikhonov regularization with oversmoothing penalty for linear statistical inverse learning problems. AIP Conference Proceedings 2183(1): 110004 AIP Publishing LLC. DOI

  • Rastogi, A. and Mathé, P. (2020). Inverse learning in Hilbert scales.arXiv 2002.10208

  • Celisse, A. and Wahl, M. (2020). Analyzing the discrepancy principle for kernelized spectral filter learning algorithms.arXiv: 2004.08436

  • D. Schindler, T. Moldenhawer, L. Lindenmeier, and M. Holschneider. Amoepy (version 1.0), 2020. doi:10.5281/zenodo.3982372

  • Cervantes, S., Shprits, Y. Y., Aseev, N. A., and Allison, H. J. (2020). Quantifying the effects of EMIC wavescattering and magnetopause shadowing in the outer electron radiation belt by means of data as-similation. J. Geophys. Res.-Space, 125(8):e2020JA028208, doi:10.1029/2020JA028208

  • de Wiljes, J. and Tong, X. T (2020): Analysis of a localised nonlinear Ensemble Kalman Bucy Filter with complete and accurate observations. Nonlinearity, 33(9): 4752-4782 [2]  arXiv:1908.10580v3

  • Maoutsa, D., Reich, S., and Opper, M. (2020). Interacting particle solutions of Fokker-Planck equations through gradient-log-density estimation. Entropy, Vol. 22, 0802. doi:10.3390/e22080802. arXiv:2006.00702

  • Avanesov, V. (2020): Data-driven confidence bands for distributed nonparametric regression. Proceedings of Machine Learning Research vol. 125. DSpace,  PMLR

  • Zass, A. (2020): A Gibbs point process of diffusions: existence and uniqueness. Proceedings of the XI international conference stochastic and analytic methods in mathematical physics (Lectures in pure and applied mathematics 6), Universitätsverlag Potsdam, 13-22. Open Access

  • Houdebert, P. (2020): Numerical study for thephase transition of thearea-interaction model. Proceedings of the XI international conference stochastic and analytic methods in mathematical physics (Lectures in pure and applied mathematics 6), Universitätsverlag Potsdam, 165–174. Open Access

  • J. Cheshire, P. Menard, and A. Carpentier. The influence of shape constraints on the thresholding bandit problem. In: Conference on Learning Theory. PMLR. 2020, pp. 1228–1275, 2020.

  • Ruchi, A., Dubinkina, S., and de Wiljes, J. (2020). Fast hybrid tempered ensemble transform filter for Bayesianelliptical problems. Nonlin. Processes Geophys., in press, doi:10.5194/npg-2020-24

  • Hamm, M., Pelivan, I., Grott, M., and de Wiljes, J. (2020). Thermophysical modelling and parameter esti-mation of small solar system bodies via data assimilation. Mon. Not. R. Astron. Soc., 496:2776–2785, doi:10.1093/mnras/staa1755

  • Maneugueu, A., Vernade, C., Carpentier A., and Valko, M. (2020). Stochastic bandits with arm-dependent delays. In Thirty-seventh International Conference on Machine Learning, accepted for publication. arXiv:2006.10459

  • A. G. Maneugueu, C. Vernade, A. Carpentier, and M. Valko. Stochastic bandits with arm-dependent delays. In: International Conference on Machine Learning. PMLR. 2020, pp. 3348–3356, 2020. arXiv:2006.10459

  • Schwetlick, L., Rothkegel, L.O.M., Trukenbrod, H.A., Engbert, R. (2020). Modeling the effects of perisaccadic attention on gaze statistics during scene viewing. Communications Biology, 3, 727. doi: 10.1038/s42003-020-01429-8

  • Maier C., Hartung N., Kloft C., Huisinga W., de Wiljes J. (2020): Combining reinforcement learning with data assimilation for individualised dosing policies in oncology. arXiv:2006.01061

  • Roelly, S. and Zass, A. (2020). Marked Gibbs Point Processes with Unbounded Interaction: An Existence Result. Journal of Statistical Physics 179, 972–996 (2020). Open Access

  • Garbuno-Inigo, A., Nüsken, N., and Reich, S. (2020). Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM J. Dyn. Syst., Vol. 19(3), 1633-1658. doi:10.1137/19M1304891. arXiv:1912.02859

  • Pasemann, G. and Stannat, W. (2020): Drift Estimation for Stochastic Reaction-Diffusion Systems. Electron. J. Statist. 14, no. 1, 547-579. doi:10.1214/19-EJS1665  arXiv 1904.04774

  • Jäger, L. A., Makowski, S., Prasse, P., Liehr, S., Seidler, M., & Scheffer, T. (2019). Deep Eyedentification: Biometric Identification using Micro-Movements of the Eye. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 299-314. Springer, Cham. doi: 10.1007/978-3-030-46147-8_18

  • Zhelavskaya, I., Aseev, N. A., Shprits, Y. Y., and Spasojevi, M. (2020). A combined neural network- and physics-based approach for modeling the plasmasphere dynamics, ESSOAr. doi:10.1002/essoar.10502691.1

  • Seelig, S. A., Rabe, M. M., Malem-Shinitski, N., Risse, S., Reich, S., and Engbert, R. (2020). Bayesian parameter estimation for the SWIFT model of eye-movement control during reading. Journal of Mathematical Psychology, 95, 102313. doi:10.1016/j.jmp.2019.102313arXiv: 1901.11110.

  • Flemming, S., Font, F., Alonso, S., and Beta, C. (2020). How cortical waves drive fission of motile cells. PNAS, 117(12):6330–6338, doi:10.1073/pnas.1912428117

  • Duval, C. and Mariucci, E. (2020). Non-asymptotic control of the cumulative distribution function of Lévy processes. arXiv 2003.09281

  • Vernade, C., Carpentier, A., Lattimore, T., Zappella, G., Ermis, B. and Brueckner, M. (2020). Linear Bandits with Stochastic Delayed Feedback. arXiv:1807.02089

  • de Wiljes, J., Pathiraja, S. and Reich, S. (2020): Ensemble transform algorithms for nonlinear smoothing problems. SIAM J. Scientific Computing, 42, A87-A114. arXiv:1901.06300doi: 10.1137/19M1239544

  • Maier C., Hartung N., de Wiljes J., Kloft C. and Huisinga W.. Bayesian data assimilation to supportinformed decision-making in individualized chemotherapy. CPT Pharmacometrics Syst. Pharmacol.,9(3):153164, 2020. doi:10.1002/psp4.12492

  • Spokoiny, V. (2019). Bayesian inference for nonlinear inverse problems. arXiv:1912.12694

  • Cervantes, S., Shprits, Y. Y., Aseev, N., Drozdov, A., Castillo, A., and Stolle, C. (2020). Identifying radiation beltelectron source and loss processes by assimilating spacecraft data in a three-dimensional diffusionmodel. J. Geophys. Res.-Space, 125(1):1–16, doi:10.1029/2019JA027514

  • Engbert, R., Rabe, M.M., Seelig, S.A., and Reich, S. (2019): Bayesian parameter estimation for dynamical models of eye-movement control using adaptive Markov Chain Monte Carlo simulations. Forschung im HLRN-Verbund 2019.

  • Gugushvili, S., Mariucci, E. and Meulen, van der F. (2019). Decompounding discrete distributions: A non-parametric Bayesian approach. To appear in Scandinavian Journal of Statistics. arXiv: 1903.11142 

  • Mariucci, E., Ray, K. and Szabó, B. (2019). A Bayesian nonparametric approach to log-concave density estimation. To appear in Bernoulli. arXiv: 1703.09531

  • Pathiraja, S. and Reich, S. (2019). Discrete gradients for computational Bayesian inference. Journal of Computational Dynamics, 6, 385-400. arXiv:1901.06300doi: 10.3934/jcd.2019019

  • Geßner, H. & Kiy, A., (2019). A mobile campus application as a sensor node for Personal Learning Environments. In: Pinkwart, N. & Konert, J. (Hrsg.), DELFI 2019. Bonn: Gesellschaft für Informatik e.V.. (S. 187-192). DOI: 10.18420/delfi2019_356

  • Lange, T. and Stannat, W. (2019): On the continuous time limit of Ensemble Square Root Filters. arXiv 1910.12493

  • Spokoiny, V., and Panov, M. (2019). Accuracy of Gaussian approximation in nonparametric Bernstein–vonMises theorem. arXiv:1910.06028

  • Blanchard, G. and Zadorozhnyi, O. (2019). Concentration of weakly dependent Banach-valued sums and applications to statistical learning methods. Bernoulli, 25(4B), 3421-3458. doi:10.3150/18-BEJ1095 (arXiv: 1712.01934)

  • Castillo, A. M., Shprits, Y. Y., Ganushkina, N., Drozdov, A., Aseev, N., Wang, D. and Dubyagin, S. (2019). Simulations of the inner magnetospheric energetic electrons using the IMPTAM-VERB coupled model. Journal of Atmospheric and Solar-Terrestrial Physics. doi: 10.1016/j.jastp.2019.05.014 

  • Malem-Shinitski, N., Seelig, S. A., Reich, S. and Engbert, R. (2019): Bayesian inference for an exploration-exploitation model of human gaze control. Conference on Cognitive Computational Neuroscience, 13-16 September 2019, Berlin, Germany (extended abstract). doi:10.32470/CCN.2019.1246-0

  • Seelig, S. A., Rabe, M. M., Malem-Shinitski, N., Reich, S., Engbert, R. (2019). Parameter estimation for the SWIFT model of eye-movement control during reading. Conference on Cognitive Computational Neuroscience, 13-16 September 2019, Berlin, Germany (extended abstract) doi:10.32470/CCN.2019.1369-0

  • Shcherbakov, R., Zhuang, J., Zöller, G. and Ogata, Y. (2019). Forecasting the magnitude of the largest expected earthquake, Nature Communications, 10, nr. 4051. doi: 10.1038/s41467-019-11958-4

  • Nuesken, N. and Reich, S. (2019). Note on Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and StuartarXiv:1908.10890

  • Houdebert, P. (2019). Phase transition of the non-symmetric Continuum Potts modelarXiv: 1908.10066

  • Avanesov, V. (2019). How to gamble with non-stationary X-armed bandits and have no regretsarXiv:1908.07636

  • Avanesov, V. (2019). Structural break analysis in high-dimensional covariance structure. arXiv: 1803.00508

  • Cvetković N., Conrad T., and Lie H.C. (2019). Convergent discretisation schemes for transition path theory for diffusion processes (2019). SIAM Multiscale Modelling and Simulation 19(1), 242–266. doi.org/10.1137/20M1329354; arXiv:1907.05799

  • Avanesov, V. (2019). Nonparametric Change Point Detection in Regression. arXiv:1903.02603

  • Götze, F., Naumov, A., Spokoiny, V. and Ulyanov, V. (2019). Gaussian comparison and anti-concentration inequalities for norms of Gaussian random elements, Bernoulli, in print. arXiv:1708.08663

  • Lefakis, L., Zadorozhnyi, O. and Blanchard, G. (2019). Efficient Regularized Piecewise-Linear Regression TreesarXiv: 1907.00275​​​​​​​ 

  • Zadorozhnyi, O., Blanchard, G. and Carpentier, A. (2019). Restless dependent bandits with fading memory. arXiv: 1906.10454 

  • Ty, A.J.A., Fang, Z., Gonzales, R.A., Rozdeba, P.J. and Abarbanel, H.D.I. (2019), Machine Learning of Time Series Using Time-delay Embedding and Precision Annealing. Neural Computation Vol. 31(10), 2004-2024. doi:10.1162/neco_a_01224. arXiv:1902.05062

  • Trukenbrod, H. A., Barthelmé, S., Wichmann, F. A. and Engbert, R. (2019). Spatial statistics for gaze patterns in scene viewing: Effects of repeated viewing, Journal of Vision, 19(6):5, 1-19. doi: 10.1167/19.6.5

  • Blanchard, G., Mathé, P. and Mücke, N. (2019). Lepskii Principle in Supervised Learning. arXiv: 1905.10764 

  • Somogyvári, M. and Reich, S. (2019). Convergence tests for transdimensional Markov chains in geoscience imaging, Math Geosci, 2019. doi: 10.1007/s11004-019-09811-x

  • Nüsken, N., Reich, S. and Rozdeba, P. J. (2019). State and parameter estimation from observed signal increments, Entropy, Vol. 21(5), 505. arXiv:1903.10717 ;  doi: 10.3390/e21050505

  • Lontsi, A. M., García-Jerez, A., Molina-Villegas, J. C., Sánchez-Sesma, F. J., Molkenthin, C., Ohrnberger, M., Krüger, F., Wang, R. and Fäh, D. (2019). A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments, Geophysical Journal International, 218(2), 1276–1297. doi: 10.1093/gji/ggz223 arXiv: 1907.04606 

  • Achddou, J., Lam-Weil, J., Carpentier, A. and Blanchard, G. (2019). A minimax near-optimal algorithm for adaptive rejection sampling. Proceedings of the 30th International Conference on Algorithmic Learning Theory, PMLR 98:94-126, 2019. Open Access

  • Reich, S. (2019): Data assimilation: The Schrödinger perspective. Acta Numerica, 28, 635-711. arXiv:1807.08351doi:10.1017/S0962492919000011

  • Locatelli, A., Carpentier, A., and Valko, M. (2019). Active multiple matrix completion with adaptive confidence sets. Proceedings of Machine Learning Research, PMLR, 89, 1783-1791. Open Access

  • Seznec, J, Locatelli, A., Carpentier, A., Lazaric, A., and Valko, M. (2019): Rotting bandits are no harder than stochastic ones. Proceedings of Machine Learning Research, in PMLR 89:2564-2572. Open Access

  • Leeuwen, P. J. v., Künsch, H.-R., Nerger, L., Potthast, R. and Reich, S. (2019): Particle filters for high-dimensional geoscience applications: a review. Quarterly J Royal Meteorlog. Soc., 145, 2335-2365. arXiv: 1807.10434v2 doi: 10.1002/qj.3551

  • Wahl, M. (2019). A note on the prediction error of principal component regression.arXiv: 1811.02998

  • Katz-Samuels, J., Blanchard, G. and Scott, C. (2019). Decontamination of Mutual Contamination Models. Journal of Machine Learning Research (41):1−57, 2019 Open Access

  • Carpentier, A., Duval, C. and Mariucci, E. (2019). Total variation distance for discretely observed Lévy processes: a Gaussian approximation of the small jumps. arXiv: 1810.02998

  • Aseev, N. A. and Shprits, Y. Y. (2019). Reanalysis of ring current electron phase space densities using Van AllenProbe observations, convection model, and log-normal Kalman Filter. Space Weather, 17(4):619–638, doi:10.1029/2018SW002110

  • Salamat, M., Zöller, G. and Amini, M. (2019). Prediction of the Maximum Expected Earthquake Magnitude in Iran: From a Catalog with Varying Magnitude of Completeness and Uncertain Magnitudes, Pure and Applied Geophysics, 176 (8): 3425–3438. doi: 10.1007/s00024-019-02141-3

  • Rothkegel, L. O., Schütt, H. H., Trukenbrod, H. A., Wichmann, F. A. and Engbert, R. (2019). Searchers adjust their eye-movement dynamics to target characteristics in natural scenes. Scientific Reports, 9, article no. 1635. doi: 10.1038/s41598-018-37548-w

  • Opper, M. (2019). Variational inference for stochastic differential equations. Ann. Phys., 531(3):1800233, doi:10.1002/andp.201800233

  • Duval, C. and Mariucci, E. (2019). Compound Poisson approximation to estimate the Lévy density. arXiv: 1702.08787 

  • Aseev, N. A., Shprits, Y. Y., Wang, D., Wygant, J., Drozdov, A. Y., Kellerman, A. C., and Reeves, G. D. (2019). Transport and loss of ring current electrons inside geosynchronous orbit during the 17 March 2013 storm. J. Geophys. Res.-Space, 124(2):915–933. doi:10.1029/2018JA026031

  • Blanchard, G., Neuvial, P. and Roquain, E. (2019). Post hoc inference via joint family-wise error rate control. (to appear in Annals of Statistics) arXiv: 1703.02307

  • Jirak, M. and Wahl, M. (2018). Perturbation bounds for eigenspaces under a relative gap condition.arXiv: 1803.03868

  • Donner, C. and Opper, M. (2018). Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes, Journal of Machine Learning Research 19, no 67, 1-34. Open Access

  • Morzfeld, M. and Reich, S. (2018): Data assimilation: mathematics for merging models and data. Snapshots of modern mathematics from Oberwolfach, 11. doi: 10.14760/SNAP-2018-011-EN

  • Makowski, S., Jäger, L., Abdelwahab, A., Landwehr, N. and Scheffer, T. (2018). A discriminative model for identifying readers and assessing text comprehension from eye movements. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD). doi: 10.1007/978-3-030-10925-7_13, arxiv preprint: https://arxiv.org/pdf/1809.08031.pdf

  • Blanchard, G., Hoffmann, M. and Reiß, M. (2018). Early stopping for statistical inverse problems via truncated SVD estimation. Electron. J. Statist. 12 (2): 3204-3231. arXiv 1710.07278; doi: 10.1214/18-EJS1482

  • Blanchard, G. and Mücke, N. (2018). Parallelizing Spectral Algorithms for Kernel Learning. Journal of Machine Learning Research (30):1-29, 2018. Open Access

  • Alonso, S., Stange, M. and Beta, C. (2018). Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells. PLoS ONE, 13(8): e0201977. doi: 10.1371/journal.pone.0201977

  • Fiedler, B., Hainzl, S., Zöller, G. and Holschneider, M. (2018). Detection of Gutenberg–Richter b-value changes in earthquake time series, Bulletin of the Seismological Society of America, 108(5A), 2778–2787. doi: 10.1785/0120180091

  • Salamat, M., Zöller, G. Zare, M. and Amini, M. (2018). The maximum expected earthquake magnitudes in different future time intervals of six seismotectonic zones of Iran and its surroundings, Journal of Seismology, 22, 1485–1498. doi: 10.1007/s10950-018-9780-7

  • Cherstvy, A. G., Nagel, O., Beta, C. and Metzler, R. (2018). Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells. doi: 10.1039/c8cp04254c

  • Locatelli, A., and Carpentier, A. (2018). Adaptivity to Smoothness in X-armed bandits. Proceedings of Machine Learning Research, PMLR, 75, 1463-1492. Open Access

  • Pathiraja, S. and van Leeuwen, P.J. (2018). Model uncertainty estimation in data assimilation for multi-scale systems with partially observed resolved variables, Quarterly Journal of the Royal Meteorological Society, under review, arXiv: 1807.09621

  • Blanchard, G., Hoffmann, M. and Reiß, M. (2018). Optimal adaptation for early stopping in statistical inverse problems. SIAM/ASA Journal on Uncertainty Quantification 6(3): 1043-1075. arXiv 1606.07702; doi:10.1137/17M1154096

  • Zöller, G. (2018): A Statistical Model for Earthquake Recurrence Based on the Assimilation of Paleoseismicity, Historic Seismicity, and Instrumental Seismicity. Journal of Geophysical Research: Solid Earth, 123, 4906-4921. doi: 10.1029/2017JB015099

  • Donner, C. and Opper, M. (2018). Efficient Bayesian Inference for a Gaussian Process Density Model, Proc. in Conference on Uncertainty in Artificial Intelligence, 2018. Open Access

  • Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L. and Moradkhani, H. (2018). Time varying parameter models for catchments with land use change: The importance of model structure, Hydrology and Earth System Sciences, 22(5), 2903-2919. doi: 10.5194/hess-22-2903-2018

  • Jirak, M. and Wahl, M. (2018). Relative perturbation bounds with applications to empirical covariance operators.arXiv: 1802.02869

  • Fiedler, B., Zöller, G., Holschneider, M. and Hainzl, S. (2018). Multiple Change‐Point Detection in Spatiotemporal Seismicity Data, Bulletin of the Seismological Society of America. 108 (3A): 1147-1159. doi: 10.1785/0120170236

  • Bachoc, F., Blanchard, G. and Neuvial, P. (2018): On the post selection inference constant under restricted isometry properties. Electron. J. Statist. 12(2): 3736-3757. doi: 10.1214/18-EJS1490

  • de Wiljes, J., Reich, S. and Stannat, W. (2018): Long-Time Stability and Accuracy of the Ensemble Kalman--Bucy Filter for Fully Observed Processes and Small Measurement Noise. SIAM Journal on Applied Dynamical Systems, 17(2), 1152-1181. arXiv: 1612.06065; doi: 10.1137/17M1119056

  • Moradkhani, H., Nearing, G., Abbaszadeh, P. and Pathiraja, S. (2018).  Fundamentals of Data Assimilation and Theoretical Advances. In: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H.L. and Schaake, J. C. (eds), Handbook of Hydrometeorological Ensemble Forecasting. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1 -26. doi: 10.1007/978-3-642-40457-3_30-1 

  • Silin, I. and Spokoiny, V. (2018): Bayesian inference for spectral projectors of the covariance matrix, Electron. J. Statist. 12(1), 1948-1987. doi:10.1214/18-EJS1451arXiv:1711.11532

  • Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L. and Moradkhani, H. (2018): Insights on the impact of systematic model errors on data assimilation performance in changing catchments, Advances in Water Resources, 113 (December 2017), 202-222. doi: 10.1016/j.advwatres.2017.12.006

  • Blanchard, G., Carpentier, A. and Gutzeit, M. (2018): Minimax Euclidean Separation Rates for Testing Convex Hypotheses in Rd. Electron. J. Statist. 12 (2): 3713-3735. doi:10.1214/18-EJS1472

  • Pathiraja, S., Moradkhani, H., Marshall, L., Sharma, A. and Geenens, G. (2018): Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation, Water Resources Research, 54(2), 1252-1280. doi: 10.1002/2018WR022627

  • Ni, B., Cao, X., Shprits, Y. Y., Summers, D., Gu, X., Fu, S. and Lou, Y. (2018). Hot Plasma Effects on the Cyclotron-Resonant Pitch-Angle Scattering Rates of Radiation Belt Electrons Due to EMIC Waves. Geophysical Research Letters, 45, 21-30. doi: 10.1002/2017GL07602

  • Locatelli, A., Carpentier, A., and Kpotufe, S. (2018): An Adaptive Strategy for Active Learning with Smooth Decision Boundary. Proceedings of Machine Learning Research (ALT), 83, 547-571. Open Access

  • Gribonval, R., Blanchard, G.,  Keriven, N. and Traonmilin, Y. (2017). Compressive Statistical Learning with Random Feature Moments.arXiv 1706.07180

  • Zhelavskaya, I. S., Shprits, Y. Y. and Spasojevic, M. (2017): Empirical modeling of the plasmasphere dynamics using neural networks. Journal of Geophysical Research: Space Physics, 122, 11227–11244. doi:10.1002/2017JA024406

  • Aseev, N. A., Shprits, Y. Y., Drozdov, A. Y., Kellerman, A. C., Usanova, M. E., Wang, D. and Zhelavskaya, I. S. (2017): Signatures of Ultrarelativistic Electron Loss in the Heart of the Outer Radiation Belt Measured by Van Allen Probes. Journal of Geophysical Research, 122, 10102-10111. doi: 10.1002/2017JA024485

  • Borovsky, J. E. and Shprits, Y. Y. (2017): Is the Dst Index Sufficient to Define All Geospace Storms?. Journal of Geophysical Research: Space Physics, 122, 11543-11547. doi:10.1002/2017JA024679

  • Taghvaei, A., de Wiljes, J., Mehta, P. G. and Reich, S. (2017): Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem. ASME Journal of Dynamical Systems, Measurement, and Control, 140(3), 030904. arXiv: 1702.07241doi: 10.1115/1.4037780

  • Schütt, H. H., Rothkegel, L. O. M., Trukenbrod, H. A., Reich, S., Wichmann, F. A. and Engbert, R. (2017): Likelihood-based parameter estimation and comparison of dynamical cognitive models. Psychological Review, 124, 505-524. doi:10.1037/rev0000068