Publications
Birzhan Ayanbayev, Ilja Klebanov, Han Cheng Lie and T J Sullivan (2021). Gamma-convergence of Onsager–Machlup functionals: II. convergence of Onsager–Machlup functionals: II. Infinite product measures on Banach spaces. Inverse Problems, Volume 38, Number 2, doi:10.1088/1361-6420/ac3f82.
M. Redmann, M.A. Freitag (2021). Optimization based model order reduction for stochastic systems. Appl. Math. Comput., 398.
H. C. Lie, M. Stahn, T.J. Sullivan (2022). Randomised one-step time integration methods for deterministic operator differential equations. Calcolo, Volume 59, Number 13 doi:10.1007/s10092-022-00457-6.
M.A. Freitag, S. Reich (2022). Datenassimilation: Die nahtlose Verschmelzung von Daten und Modellen. Mitteilungen der Deutschen Mathematiker-VereinigungVerlag, De GruyterSeiten, 108‒112, Band 30.
Chen, Y, Huang D.Z., Huang J., Reich, S., and Stuart, A.M. (2023). Gradient flows for sampling: Mean-field models, Gaussian approximations and affine invariance arXiv:2302.11024
Cvetkovic, N. and Lie, H. C. and Bansal, H. and Veroy-Grepl, K. (2023). Choosing observation operators to mitigate model error in Bayesian inverse problems. ArXiv 2301.04863
Kim, J.W. and Reich, S. (2023): On forward-backward SDE approaches to continuousßtime minimum variance estimation. arXiv 2304.12727
Pidstrigach, J., Marzouk, Y., Reich, S., and Wang., S. (2023). Infinite-dimensional diffusion models for function spaces arXiv:2302.10130
Mach, T and Freitag, M.A. (2023). Solving the Parametric Eigenvalue Problem by Taylor Series and Chebyshev Expansion arXiv 230212.03661
Rabe, M. M., Paape, D., Mertzen, D., Vasishth, S., & Engbert, R. (2023). SEAM: An integrated activation-coupled model of sentence processing and eye movements in reading. arXiv:2303.05221
Janák, J. and Reiß, M. (2023). Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements. arXiv:2303.00074v1
Kemeth, F., Alonso, S., Echebarria, B., Moldenhawer, T., Beta, C. and Kevrekidis I. (2022). Black and Gray Box Learning of Amplitude Equations: Application to Phase Field Systems. arXiv: 2207.03954
Moldenhawer, T., Moreno, E., Schindler, D., Flemming, S., Holschneider, M., Huisinga, W., Alonso, S. and Beta, C. (2022). Spontaneous transitions between amoeboid and keratocyte-like modes of migration. Front. Cell Dev. Biol., 10:898351, doi:10.3389/fcell.2022.898351
Schindler, D., Moldenhawer, T., Beta, C., Huisinga, W. and Holschneider, M. (2022). Three-component contour dynamics model to simulate and analyze amoeboid cell motility. arXiv:2210.12978
Yochelis, A., Flemming, S. and Beta, C. (2022) Versatile Patterns in the Actin Cortex of Motile Cells: Self-Organized Pulses Can Coexist with Macropinocytic Ring-Shaped Waves. Phys. Rev. Lett., 129:088101, doi:10.1103/PhysRevLett.129.088101
Schwetlick, L.; Backhaus, D. & Engbert, R. (2022). A dynamical scan-path model for task-dependence during scene viewing. Psychological Review, American Psychological Association (APA),doi: 10.1037/rev0000379
Kim, J. W. and Mehta, P. G. (2022): Duality for Nonlinear Filtering II: Optimal Control. arXiv 2208.06587
Kim, J. W. and Mehta, P. G. (2022): Duality for Nonlinear Filtering I: Observability. arXiv 2208.06586
König, J. and Freitag, M. (2022). Time-limited Balanced Truncation for Data Assimilation Problems. arXiv 2212.07719.
Vilk, O., Aghion, E., Avgar, T., Beta, C., Nagel, O., Sabri, A., Sarfati, R., Schwartz, D., Weiss, M., Krapf, D., Nathan, R., Metzler, R. and Assaf, M. (2022) Unravelling the origins of anomalous diffusion: From molecules to migrating storks. Phys. Rev. Research, 4:033055, doi:10.1103/PhysRevResearch.4.033055
Lie, H. C. and Rudolf, D. and Sprungk, B. and Sullivan, T. J. (2022). Dimension-independent Markov chain Monte Carlo on the sphere. ArXiv 2112.12185
Riedel, C., Geßner, H., Seegebrecht, A., Ayon, S. I., Chowdhury, S. H., Engbert, R. & Lucke, U., (2022). Including Data Management in Research Culture Increases the Reproducibility of Scientific Results. In: Demmler, D., Krupka, D. & Federrath, H. (Hrsg.), INFORMATIK 2022. Gesellschaft für Informatik, Bonn. (S. 1341-1352). DOI: 10.18420/inf2022_114
Moreno, E., Grossmann, R., Beta, C. and Alonso S. (2022) From Single to Collective Motion of Social Amoebae: A Computational Study of Interacting Cells. Front. Phys., 9:750187, doi:10.3389/fphy.2021.750187
Reich, S. (2022): Data assimilation: A dynamic homotopy-based coupling approach. arXiv 2209.05279
Calvello, E., Reich, S. and Stuart A.M.(2022): Ensemble Kalman methods: A mean field approach. arXiv 2209.11371
Alqahtani, A., Mach, T., and Reichel, L. (2023). Solution of Ill-posed Problems with Chebfun. Numerical Algorithms (2023). doi:10.1007/s11075-022-01390-z arXiv 2007.16137
Pidstrigach, J. and Reich, S. (2022). Affine-invariant ensemble transform methods for logistic regression. Foundation of Computational Mathematics, 22, doi:10.10007/s10208-022-09550-2.
Molkenthin, C., Donner, C., Reich, S., Zöller, G., Hainzl, S., Holschneider, M. and Opper, M. (2022): GP-ETAS: Semiparametric Bayesian inference for the spatio-temporal Epidemic Type Aftershock Sequence model. Statistics and Computation, Vol. 32, 29. doi:10.1007/s11222-022-10085-3.
Huang, D.Z., Huang, J., Reich, S., and Stuart, A.M. (2022). Efficient derivative-free Bayesian inference for large-scale inverse problems. arXiv:2204.04386.
Yadav, H., Smith, G., Reich, S., and Vasishth, S. (2022). Number feature distortion modulates cue-based retrieval in reading. doi:10.31234/osf.io/s4c9t.
Engbert, R., Rabe, M. M., Schwetlick, L., Seelig, S. A., Reich, S., Vasishth, S. (2022). Data assimilation in dynamical cognitive science. Trends in Cognitive Sciences, 26(2), 99-102, doi:10.1016/j.tics.2021.11.006.
Malem-Shinitski, N., Ojeda, C., and Opper, M. (2022). Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects. Entropy, 24(3), 356, doi: 10.3390/e24030356.
Mach, T., Reichel, L., and Van Barel, M. (2023). Adaptive cross approximation for Tikhonov regularization in general form. Numerical Algorithms, doi:10.1007/s11075-022-01395-8 arXiv 2204.05740
Gaudlitz, S. and Reiß, M. (2022). Estimation for the reaction term in semi-linear SPDEs under small diffusivity. arXiv:2203.10527
Pathiraja, S., & van Leeuwen, P. J. (2022). Multiplicative non-Gaussian model error estimation in data assimilation. Journal of Advances in Modeling Earth Systems, 14, e2021MS002564. https://doi.org/10.1029/2021MS002564
Ruchi, S., Dubinkina, S. and de Wiljes, J. (2021). Fast hybrid tempered ensemble transform filter for Bayesian elliptical problems via Sinkhorn approximation. Nonlinear Processes in Geophysics, 28(1): 23-41 [1]
Reich, S. (2022). Frequentist perspective on robust parameter estimation using the ensemble Kalman filter arXiv:2201.000611
Birzhan Ayanbayev, Ilja Klebanov, Han Cheng Lie and T J Sullivan (2021). Gamma-convergence of Onsager–Machlup functionals: I. With applications to maximum a posteriori estimation in Bayesian inverse problems. Inverse Problems, Volume 38, Number 2, doi:10.1088/1361-6420/ac3f81.
Ba, Y., de Wiljes, J., Oliver, D.S., and Reich, S. (2021). Randomized maximum likelihood based posterior sampling, Computational Geosciences, https://doi.org/10.1007/s10596-021-10100-y arXiv:2101.03612
Pathiraja, S., Reich, S., Stannat, W. (2021): McKean-Vlasov SDEs in nonlinear filtering. SIAM Journal on Control and Optimization. doi:10.1137/20M1355197 arXiv 2007.12658
Gottwald, G.A., and Reich, S. (2021). Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 31, 101103, doi:10.1063/5.0066080 arXiv:2108.03561
Pidstrigach, J. and Reich, S. (2021). Affine-invariant ensemble transform methods for logistic regression arXiv: 2104.08061
Pathiraja, S. and Stannat, W. (2021). Analysis of the feedback particle filter with diffusion map based approximation of the gain. Foundations of Data Science. doi:10.3934/fods.2021023 arXiv:2109.02761
Schindler, D., Moldenhawer, T., Stange, M., Lepro, V., Beta, C., Holschneider, M., and Huisinga, W. (2021). Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows. PLoS Comput Biol 17(8): e1009268. doi:journal.pcbi.1009268
Geßner, H. (2021). Transparently Safeguarding Good Research Data Management with the Lean Process Assessment Model. In: E-Science-Tage 2021: Share Your Research Data. Heidelberg. DOI: 10.11588/heidok.00029719
Dietrich, F., Makeev, A., Kevrekidis, G., Evangelou, N., Bertalan, T., Reich, S., and Kevrekidis, I.G. (2021). Learning effective stochastic differential equations from microscopic simulations: combining stochastic numerics and deep learning. arXiv:2106.09004
Rabe, M. M., Chandra, J., Krügel, A., Seelig, S. A., Vasishth, S., & Engbert, R. (2021). A Bayesian approach to dynamical modeling of eye-movement control in reading of normal, mirrored, and scrambled texts. Psychological Review doi:10.1037/rev0000268, psyarXiv
Pasemann, G. and Flemming, S. and Alonso, S. and Beta, C. and Stannat, W. (2020). Diffusivity Estimation for Activator-Inhibitor Models: Theory and Application to Intracellular Dynamics of the Actin Cytoskeleton. Journal of Nonlinear Science 31, 59 (2021). doi:10.1007/s00332-021-09714-4 arXiv 2005.09421
Gottwald, G., and Reich, S. (2021). Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation. Physica D, Vol. 423, 132911. doi:10.1016/j.physd.2021.132911. arXiv:2007.07383
Wormell, C.L. and Reich, S. (2021). Spectral convergence of diffusion maps: Improved error bounds and an alternative normalisation. SIAM Journal Numerical Analysis,59, 1687-1734. arXiv 2006.02037; doi:10.1137/30M1344093
Hartung, N., Wahl, M., Rastogi, A., and Huisinga, W. (2021). Nonparametric goodness-of-fit tests for parametric covariate models in pharmacometric analyses. CPT Pharmacometrics & Systems Pharmacology 10: 564-576. ArXiv 2011.07539 DOI
Cialenco, I. and Kim, H.-J. and Pasemann, G. (2021). Statistical analysis of discretely sampled semilinear SPDEs: a power variation approach. arXiv:2103.04211
Blanchard, G., Deshmukh, A., Dogan, U., Lee, G. and Scott, C. (2021). Domain Generalization by Marginal Transfer Learning. Journal of Machine Learning Research 22(2):1−55. Open Access
Zadorozhnyi, O. and Gaillard, P. and Gerchinovitz, S. and Rudi, A. (2021). Online nonparametric regression with Sobolev kernels. arxiv: 2102.03594
Lange, T. and Stannat W. (2021). Mean field limit of Ensemble Square Root filters - discrete and continuous time, Foundations of Data Science. doi: 10.3934/fods.2021003
Reich, S. and Weissmann, S. (2021). Fokker-Planck particle systems for Bayesian inference: Computational approaches, SIAM/ASA J. Uncertainty Quantification, 9(2), 446–482. doi: 10.1137/19M1303162; arXiv:1911.10832
Ba, Y., de Wiljes, J., Oliver, D.S., and Reich, S. (2021). Randomized maximum likelihood based posterior sampling. arXiv:2101.03612
Lange, T. (2020): Derivation of Ensemble Kalman-Bucy Filters with unbounded nonlinear coefficients. arXiv 2012.07572
Schwetlick, L., Rothkegel, L.O.M., Trukenbrod, H.A., Engbert, R. (2020). Modeling the effects of perisaccadic attention on gaze statistics during scene viewing. Communications Biology, 3, 727. doi: 10.1038/s42003-020-01429-8
Moreno, E., Flemming, S., Font, F., Holschneider, M., Beta, C., and Alonso, S. (2020). Modeling cell crawlingstrategies with a bistable model: From amoeboid to fan-shaped cell motion. Physica D, 412:132591, doi:10.1016/j.physd.2020.132591
Pathiraja, S. (2020): L2 convergence of smooth approximations of Stochastic Differential Equations with unbounded coefficients. arXiv 2011.13009
Castillo, A. M., de Wiljes, J., Shprits, Y. Y., and Aseev, N. A. (2020). Reconstructing the dynamics of the outerelectron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3Dcode, ESSOAr. doi:10.1002/essoar.10504674.
Makowski, S., Jäger, L. A., Prasse, P., & Scheffer, T. (2020). Biometric identification and presentation-attack detection using micro- and macro-movements of the eyes. International Joint Conference on Biometrics (IJCB), in press. Preprint: [1]
Prasse, P., Jäger, L. A., Makowski, S., Feuerpfeil, M., & Scheffer, T. (2020). On the Relationship between Eye Tracking Resolution and Performance of Oculomotoric Biometric Identification. Procedia Computer Science, 176, 2088-2097. doi: 10.1016/j.procs.2020.09.245
Makowski, S., Jäger, L. A., Schwetlick, L., Trukenbrod, H., Engbert, R., & Scheffer, T. (2020). Discriminative Viewer Identification using Generative Models of Eye Gaze. Procedia Computer Science, 176, 1348-1357. doi: 10.1016/j.procs.2020.09.144
Lange, T. and Stannat, W. (2020): On the continuous time limit of the Ensemble Kalman Filter. Mathematics of Computation, 40(327), 233-265. arXiv 1901.05204v1; doi:10.1090/mcom/3588
Seelig, S., Risse, S., and Engbert, R. (2020). Predictive modeling of the influence of parafoveal informationprocessing on eye guidance in reading. doi:10.31234/osf.io/vbmqn
Saggioro, E., de Wiljes, J., Kretschmer, M., and Runge, J. (2020). Reconstructing regime-dependent causalrelationships from observational time series. Chaos, 30(11):113115–1–113115–22, doi:10.1063/5.0020538
Engbert, R. (2021). Dynamical Models in Neurocognitive Psychology. Computational Approaches to Cognitionand Perception. Springer Nature. (in press)
Holschneider, M., Ferrat, K., Zöller, G., Molkenthin, C., and Hainzl, S. (2020). Richter b-value maps from local moments of seismicity. arXiv:2010.12298
Altmeyer, R. and Reiß, M. (2020). Nonparametric estimation for linear SPDEs from local measurements. Annals of Applied Probability, to appear. arXiv 1903.06984
Altmeyer, R. and Bretschneider, T. and Janák, J. and Reiß, M. (2020). Parameter Estimation in an SPDE Model for Cell Repolarisation. arXiv 2010.06340
M. Stange, T. Moldenhawer, and C. Beta (2020). Fluorescent (C)LSM image sequences of dictyostelium discoideum (Ax2-LifeAct mRFP) for cell track and cell contour analysis. doi:10.5061/dryad. b5mkkwhbd.
Gaidzik, F., Pathiraja, S., Saalfeld, S., Stucht, D., Speck, O., Thevenin, D., Janiga, G. (2020). Hemodynamic Data Assimilation in a Subject-specific Circle of Willis Geometry. Clinical Neuroradiology, doi:10.1007/s00062-020-00959-2
Reich, S., and Rozdeba, P. J. (2020). Posterior contraction rates for non-parametric state and drift estimation. Foundation of Data Science, Vol. 2, 333-349. doi:10.3934/fods.2020016. arXiv:2003.09219
Houdebert, P., Zass, A. (2020), An explicit continuum Dobrushin uniqueness criterion for Gibbs point processes with non-negative pair potentials. arxiv 2009.06352
Molkenthin, C., Donner, C., Reich, S., Zöller, G., Hainzl, S., Holschneider, M. and Opper, M. (2020). GP-ETAS: Semiparametric Bayesian inference for the spatio-temporal Epidemic Type Aftershock Sequence model. arXiv:2005.12857
Malem-Shinitski, N., Opper, M., Reich, S., Schwetlick, S., Seelig S. A., & Engbert, R (2020). A Mathematical Model of Exploration and Exploitation in Natural Scene Viewing. PLoS Computational Biology. doi:10.1371/journal.pcbi.1007880
Rastogi, A. (2020). Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems. Communications on Pure & Applied Analysis 19(8): 4111-4126. ArXiv 2002.01303DOI
Rastogi, A., Blanchard, G. and Mathé, P. (2020). Convergence analysis of Tikhonov regularization for non-linear statistical inverse learning problems. Electronic Journal of Statistics 14(2): 2798-2841. ArXiv 1902.05404v2DO
Milbradt, C. and Wahl, M. (2020). High-probability bounds for the reconstruction error of PCA. Statist. Probab. Lett. 161. ArXiv 1909.10787
Reiß, M. and Wahl, M. (2020). Non-asymptotic upper bounds for the reconstruction error of PCA. Ann. Stat. 48(2): 1098-1123. arXiv 1609.03779
Rastogi, A. (2019). Tikhonov regularization with oversmoothing penalty for linear statistical inverse learning problems. AIP Conference Proceedings 2183(1): 110004 AIP Publishing LLC. DOI
Rastogi, A. and Mathé, P. (2020). Inverse learning in Hilbert scales.arXiv 2002.10208
Celisse, A. and Wahl, M. (2020). Analyzing the discrepancy principle for kernelized spectral filter learning algorithms.arXiv: 2004.08436
D. Schindler, T. Moldenhawer, L. Lindenmeier, and M. Holschneider. Amoepy (version 1.0), 2020. doi:10.5281/zenodo.3982372
Cervantes, S., Shprits, Y. Y., Aseev, N. A., and Allison, H. J. (2020). Quantifying the effects of EMIC wavescattering and magnetopause shadowing in the outer electron radiation belt by means of data as-similation. J. Geophys. Res.-Space, 125(8):e2020JA028208, doi:10.1029/2020JA028208
de Wiljes, J. and Tong, X. T (2020). Analysis of a localised nonlinear Ensemble Kalman Bucy Filter with complete and accurate observations. Nonlinearity, 33(9): 4752-4782 [2] arXiv:1908.10580v3
Maoutsa, D., Reich, S., and Opper, M. (2020). Interacting particle solutions of Fokker-Planck equations through gradient-log-density estimation. Entropy, Vol. 22, 0802. doi:10.3390/e22080802. arXiv:2006.00702
Avanesov, V. (2020) Data-driven confidence bands for distributed nonparametric regression. Proceedings of Machine Learning Research vol. 125. DSpace, PMLR
Zass, A. (2020). A Gibbs point process of diffusions: existence and uniqueness. Proceedings of the XI international conference stochastic and analytic methods in mathematical physics (Lectures in pure and applied mathematics 6), Universitätsverlag Potsdam, 13-22. Open Access
Houdebert, P. (2020). Numerical study for thephase transition of thearea-interaction model. Proceedings of the XI international conference stochastic and analytic methods in mathematical physics (Lectures in pure and applied mathematics 6), Universitätsverlag Potsdam, 165–174. Open Access
Ruchi, A., Dubinkina, S., and de Wiljes, J. (2020). Fast hybrid tempered ensemble transform filter for Bayesianelliptical problems. Nonlin. Processes Geophys., in press, doi:10.5194/npg-2020-24
Hamm, M., Pelivan, I., Grott, M., and de Wiljes, J. (2020). Thermophysical modelling and parameter esti-mation of small solar system bodies via data assimilation. Mon. Not. R. Astron. Soc., 496:2776–2785, doi:10.1093/mnras/staa1755
Maneugueu, A., Vernade, C., Carpentier A., and Valko, M. (2020). Stochastic bandits with arm-dependent delays. In Thirty-seventh International Conference on Machine Learning, accepted for publication. arXiv:2006.10459
Maier C., Hartung N., Kloft C., Huisinga W., de Wiljes J. (2020): Combining reinforcement learning with data assimilation for individualised dosing policies in oncology. arXiv:2006.01061
Roelly, S. and Zass, A. (2020). Marked Gibbs Point Processes with Unbounded Interaction: An Existence Result. Journal of Statistical Physics 179, 972–996 (2020). Open Access
Garbuno-Inigo, A., Nüsken, N., and Reich, S. (2020). Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM J. Dyn. Syst., Vol. 19(3), 1633-1658. doi:10.1137/19M1304891. arXiv:1912.02859
Pasemann, G. and Stannat, W. (2019). Drift Estimation for Stochastic Reaction-Diffusion Systems. Electron. J. Statist. 14 (2020), no. 1, 547-579. doi:10.1214/19-EJS1665 arXiv 1904.04774
Altmeyer, R. and Cialenco, I. and Pasemann, G. (2020). Parameter estimation for semilinear SPDEs from local measurements. arXiv 2004.14728
Jäger, L. A., Makowski, S., Prasse, P., Liehr, S., Seidler, M., & Scheffer, T. (2019). Deep Eyedentification: Biometric Identification using Micro-Movements of the Eye. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 299-314. Springer, Cham. doi: 10.1007/978-3-030-46147-8_18
Zhelavskaya, I., Aseev, N. A., Shprits, Y. Y., and Spasojevi, M. (2020). A combined neural network- and physics-based approach for modeling the plasmasphere dynamics, ESSOAr. doi:10.1002/essoar.10502691.1
Seelig, S. A., Rabe, M. M., Malem-Shinitski, N., Risse, S., Reich, S., and Engbert, R. (2020). Bayesian parameter estimation for the SWIFT model of eye-movement control during reading. Journal of Mathematical Psychology, 95, 102313. doi:10.1016/j.jmp.2019.102313; arXiv: 1901.11110.
Flemming, S., Font, F., Alonso, S., and Beta, C. (2020). How cortical waves drive fission of motile cells. PNAS, 117(12):6330–6338, doi:10.1073/pnas.1912428117
Duval, C. and Mariucci, E. (2020). Non-asymptotic control of the cumulative distribution function of Lévy processes. arXiv 2003.09281
Vernade, C., Carpentier, A., Lattimore, T., Zappella, G., Ermis, B. and Brueckner, M. (2020). Linear Bandits with Stochastic Delayed Feedback. arXiv:1807.02089
de Wiljes, J., Pathiraja, S. and Reich, S. (2020). Ensemble transform algorithms for nonlinear smoothing problems. SIAM J. Scientific Computing, 42, A87-A114. arXiv:1901.06300; doi: 10.1137/19M1239544
Maier C., Hartung N., de Wiljes J., Kloft C. and Huisinga W.. Bayesian data assimilation to supportinformed decision-making in individualized chemotherapy. CPT Pharmacometrics Syst. Pharmacol.,9(3):153164, 2020. doi:10.1002/psp4.12492
Spokoiny, V. (2019). Bayesian inference for nonlinear inverse problems. arXiv:1912.12694
Cervantes, S., Shprits, Y. Y., Aseev, N., Drozdov, A., Castillo, A., and Stolle, C. (2020). Identifying radiation beltelectron source and loss processes by assimilating spacecraft data in a three-dimensional diffusionmodel. J. Geophys. Res.-Space, 125(1):1–16, doi:10.1029/2019JA027514
Engbert, R., Rabe, M.M., Seelig, S.A., & Reich, S. (2019). Bayesian parameter estimation for dynamical models of eye-movement control using adaptive Markov Chain Monte Carlo simulations. Forschung im HLRN-Verbund 2019.
Gugushvili, S., Mariucci, E. and Meulen, van der F. (2019). Decompounding discrete distributions: A non-parametric Bayesian approach. To appear in Scandinavian Journal of Statistics. arXiv: 1903.11142
Mariucci, E., Ray, K. and Szabó, B. (2019). A Bayesian nonparametric approach to log-concave density estimation. To appear in Bernoulli. arXiv: 1703.09531
Pathiraja, S. and Reich, S. (2019). Discrete gradients for computational Bayesian inference. Journal of Computational Dynamics, 6, 385-400. arXiv:1901.06300; doi: 10.3934/jcd.2019019
Geßner, H. & Kiy, A., (2019). A mobile campus application as a sensor node for Personal Learning Environments. In: Pinkwart, N. & Konert, J. (Hrsg.), DELFI 2019. Bonn: Gesellschaft für Informatik e.V.. (S. 187-192). DOI: 10.18420/delfi2019_356
Lange, T. and Stannat, W. (2019): On the continuous time limit of Ensemble Square Root Filters. arXiv 1910.12493
Spokoiny, V., and Panov, M. (2019). Accuracy of Gaussian approximation in nonparametric Bernstein–vonMises theorem. arXiv:1910.06028
Blanchard, G. and Zadorozhnyi, O. (2019). Concentration of weakly dependent Banach-valued sums and applications to statistical learning methods. Bernoulli, 25(4B), 3421-3458. doi:10.3150/18-BEJ1095 (arXiv: 1712.01934)
Castillo, A. M., Shprits, Y. Y., Ganushkina, N., Drozdov, A., Aseev, N., Wang, D. and Dubyagin, S. (2019). Simulations of the inner magnetospheric energetic electrons using the IMPTAM-VERB coupled model. Journal of Atmospheric and Solar-Terrestrial Physics. doi: 10.1016/j.jastp.2019.05.014
Malem-Shinitski, N., Seelig, S. A., Reich, S. and Engbert, R. (2019). Bayesian inference for an exploration-exploitation model of human gaze control. Conference on Cognitive Computational Neuroscience, 13-16 September 2019, Berlin, Germany (extended abstract). doi:10.32470/CCN.2019.1246-0
Seelig, S. A., Rabe, M. M., Malem-Shinitski, N., Reich, S., Engbert, R. (2019). Parameter estimation for the SWIFT model of eye-movement control during reading. Conference on Cognitive Computational Neuroscience, 13-16 September 2019, Berlin, Germany (extended abstract) doi:10.32470/CCN.2019.1369-0
Shcherbakov, R., Zhuang, J., Zöller, G. and Ogata, Y. (2019). Forecasting the magnitude of the largest expected earthquake, Nature Communications, 10, nr. 4051. doi: 10.1038/s41467-019-11958-4
Nuesken, N. and Reich, S. (2019). Note on Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and Stuart. arXiv:1908.10890
Houdebert, P. (2019). Phase transition of the non-symmetric Continuum Potts model. arXiv: 1908.10066
Avanesov, V. (2019). How to gamble with non-stationary X-armed bandits and have no regrets. arXiv:1908.07636
Avanesov, V. (2019). Structural break analysis in high-dimensional covariance structure. arXiv: 1803.00508
Cvetković N., Conrad T., and Lie H.C. (2019). Convergent discretisation schemes for transition path theory for diffusion processes (2019). SIAM Multiscale Modelling and Simulation 19(1), 242–266. doi.org/10.1137/20M1329354; arXiv:1907.05799
Avanesov, V. (2019). Nonparametric Change Point Detection in Regression. arXiv:1903.02603
Götze, F., Naumov, A., Spokoiny, V. and Ulyanov, V. (2019). Gaussian comparison and anti-concentration inequalities for norms of Gaussian random elements, Bernoulli, in print. arXiv:1708.08663
Lefakis, L., Zadorozhnyi, O. and Blanchard, G. (2019). Efficient Regularized Piecewise-Linear Regression Trees. arXiv: 1907.00275
Zadorozhnyi, O., Blanchard, G. and Carpentier, A. (2019). Restless dependent bandits with fading memory. arXiv: 1906.10454
Ty, A.J.A., Fang, Z., Gonzales, R.A., Rozdeba, P.J. and Abarbanel, H.D.I. (2019), Machine Learning of Time Series Using Time-delay Embedding and Precision Annealing. Neural Computation Vol. 31(10), 2004-2024. doi:10.1162/neco_a_01224. arXiv:1902.05062
Trukenbrod, H. A., Barthelmé, S., Wichmann, F. A. and Engbert, R. (2019). Spatial statistics for gaze patterns in scene viewing: Effects of repeated viewing, Journal of Vision, 19(6):5, 1-19. doi: 10.1167/19.6.5
Blanchard, G., Mathé, P. and Mücke, N. (2019). Lepskii Principle in Supervised Learning. arXiv: 1905.10764
Somogyvári, M. and Reich, S. (2019). Convergence tests for transdimensional Markov chains in geoscience imaging, Math Geosci, 2019. doi: 10.1007/s11004-019-09811-x
Nüsken, N., Reich, S. and Rozdeba, P. J. (2019). State and parameter estimation from observed signal increments, Entropy, Vol. 21(5), 505. arXiv:1903.10717 ; doi: 10.3390/e21050505
Lontsi, A. M., García-Jerez, A., Molina-Villegas, J. C., Sánchez-Sesma, F. J., Molkenthin, C., Ohrnberger, M., Krüger, F., Wang, R. and Fäh, D. (2019). A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments, Geophysical Journal International, 218(2), 1276–1297. doi: 10.1093/gji/ggz223 arXiv: 1907.04606
Achddou, J., Lam-Weil, J., Carpentier, A. and Blanchard, G. (2019). A minimax near-optimal algorithm for adaptive rejection sampling. Proceedings of the 30th International Conference on Algorithmic Learning Theory, PMLR 98:94-126, 2019. Open Access
Reich, S. (2019). Data assimilation: The Schrödinger perspective. Acta Numerica, 28, 635-711. arXiv:1807.08351; doi:10.1017/S0962492919000011
Locatelli, A., Carpentier, A., and Valko, M. (2019). Active multiple matrix completion with adaptive confidence sets. Proceedings of Machine Learning Research, PMLR, 89, 1783-1791. Open Access
Seznec, J, Locatelli, A., Carpentier, A., Lazaric, A., and Valko, M. (2019). Rotting bandits are no harder than stochastic ones. Proceedings of Machine Learning Research, in PMLR 89:2564-2572. Open Access
Leeuwen, P. J. v., Künsch, H.-R., Nerger, L., Potthast, R. and Reich, S. (2019). Particle filters for high-dimensional geoscience applications: a review. Quarterly J Royal Meteorlog. Soc., 145, 2335-2365. arXiv: 1807.10434v2 doi: 10.1002/qj.3551
Wahl, M. (2019). A note on the prediction error of principal component regression.arXiv: 1811.02998
Katz-Samuels, J., Blanchard, G. and Scott, C. (2019). Decontamination of Mutual Contamination Models. Journal of Machine Learning Research (41):1−57, 2019 Open Access
Carpentier, A., Duval, C. and Mariucci, E. (2019). Total variation distance for discretely observed Lévy processes: a Gaussian approximation of the small jumps. arXiv: 1810.02998
Aseev, N. A. and Shprits, Y. Y. (2019). Reanalysis of ring current electron phase space densities using Van AllenProbe observations, convection model, and log-normal Kalman Filter. Space Weather, 17(4):619–638, doi:10.1029/2018SW002110
Salamat, M., Zöller, G. and Amini, M. (2019). Prediction of the Maximum Expected Earthquake Magnitude in Iran: From a Catalog with Varying Magnitude of Completeness and Uncertain Magnitudes, Pure and Applied Geophysics, 176 (8): 3425–3438. doi: 10.1007/s00024-019-02141-3
Rothkegel, L. O., Schütt, H. H., Trukenbrod, H. A., Wichmann, F. A. and Engbert, R. (2019). Searchers adjust their eye-movement dynamics to target characteristics in natural scenes. Scientific Reports, 9, article no. 1635. doi: 10.1038/s41598-018-37548-w
Opper, M. (2019). Variational inference for stochastic differential equations. Ann. Phys., 531(3):1800233, doi:10.1002/andp.201800233
Duval, C. and Mariucci, E. (2019). Compound Poisson approximation to estimate the Lévy density. arXiv: 1702.08787
Aseev, N. A., Shprits, Y. Y., Wang, D., Wygant, J., Drozdov, A. Y., Kellerman, A. C., and Reeves, G. D. (2019). Transport and loss of ring current electrons inside geosynchronous orbit during the 17 March 2013 storm. J. Geophys. Res.-Space, 124(2):915–933. doi:10.1029/2018JA026031
Blanchard, G., Neuvial, P. and Roquain, E. (2019). Post hoc inference via joint family-wise error rate control. (to appear in Annals of Statistics) arXiv: 1703.02307
Jirak, M. and Wahl, M. (2018). Perturbation bounds for eigenspaces under a relative gap condition.arXiv: 1803.03868
Donner, C. and Opper, M. (2018). Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes, Journal of Machine Learning Research 19, no 67, 1-34. Open Access
Morzfeld, M. and Reich, S. (2018). Data assimilation: mathematics for merging models and data. Snapshots of modern mathematics from Oberwolfach, 11. doi: 10.14760/SNAP-2018-011-EN
Makowski, S., Jäger, L., Abdelwahab, A., Landwehr, N. and Scheffer, T. (2018). A discriminative model for identifying readers and assessing text comprehension from eye movements. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD). doi: 10.1007/978-3-030-10925-7_13, arxiv preprint: https://arxiv.org/pdf/1809.08031.pdf
Blanchard, G., Hoffmann, M. and Reiß, M. (2018). Early stopping for statistical inverse problems via truncated SVD estimation. Electron. J. Statist. 12 (2): 3204-3231. arXiv 1710.07278; doi: 10.1214/18-EJS1482
Blanchard, G. and Mücke, N. (2018). Parallelizing Spectral Algorithms for Kernel Learning. Journal of Machine Learning Research (30):1-29, 2018. Open Access
Alonso, S., Stange, M. and Beta, C. (2018). Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells. PLoS ONE, 13(8): e0201977. doi: 10.1371/journal.pone.0201977
Fiedler, B., Hainzl, S., Zöller, G. and Holschneider, M. (2018). Detection of Gutenberg–Richter b-value changes in earthquake time series, Bulletin of the Seismological Society of America, 108(5A), 2778–2787. doi: 10.1785/0120180091
Salamat, M., Zöller, G. Zare, M. and Amini, M. (2018). The maximum expected earthquake magnitudes in different future time intervals of six seismotectonic zones of Iran and its surroundings, Journal of Seismology, 22, 1485–1498. doi: 10.1007/s10950-018-9780-7
Cherstvy, A. G., Nagel, O., Beta, C. and Metzler, R. (2018). Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells. doi: 10.1039/c8cp04254c
Locatelli, A., and Carpentier, A. (2018). Adaptivity to Smoothness in X-armed bandits. Proceedings of Machine Learning Research, PMLR, 75, 1463-1492. Open Access
Pathiraja, S. and van Leeuwen, P.J. (2018). Model uncertainty estimation in data assimilation for multi-scale systems with partially observed resolved variables, Quarterly Journal of the Royal Meteorological Society, under review, arXiv: 1807.09621
Blanchard, G., Hoffmann, M. and Reiß, M. (2018). Optimal adaptation for early stopping in statistical inverse problems. SIAM/ASA Journal on Uncertainty Quantification 6(3): 1043-1075. arXiv 1606.07702; doi:10.1137/17M1154096
Zöller, G. (2018). A Statistical Model for Earthquake Recurrence Based on the Assimilation of Paleoseismicity, Historic Seismicity, and Instrumental Seismicity. Journal of Geophysical Research: Solid Earth, 123, 4906-4921. doi: 10.1029/2017JB015099
Donner, C. and Opper, M. (2018). Efficient Bayesian Inference for a Gaussian Process Density Model, Proc. in Conference on Uncertainty in Artificial Intelligence, 2018. Open Access
Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L. and Moradkhani, H. (2018). Time varying parameter models for catchments with land use change: The importance of model structure, Hydrology and Earth System Sciences, 22(5), 2903-2919. doi: 10.5194/hess-22-2903-2018
Jirak, M. and Wahl, M. (2018). Relative perturbation bounds with applications to empirical covariance operators.arXiv: 1802.02869
Fiedler, B., Zöller, G., Holschneider, M. and Hainzl, S. (2018). Multiple Change‐Point Detection in Spatiotemporal Seismicity Data, Bulletin of the Seismological Society of America. 108 (3A): 1147-1159. doi: 10.1785/0120170236
Bachoc, F., Blanchard, G. and Neuvial, P. (2018). On the post selection inference constant under restricted isometry properties. Electron. J. Statist. 12(2): 3736-3757. doi: 10.1214/18-EJS1490
de Wiljes, J., Reich, S. and Stannat, W. (2018). Long-Time Stability and Accuracy of the Ensemble Kalman--Bucy Filter for Fully Observed Processes and Small Measurement Noise. SIAM Journal on Applied Dynamical Systems, 17(2), 1152-1181. arXiv: 1612.06065; doi: 10.1137/17M1119056
Moradkhani, H., Nearing, G., Abbaszadeh, P. and Pathiraja, S. (2018). Fundamentals of Data Assimilation and Theoretical Advances. In: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H.L. and Schaake, J. C. (eds), Handbook of Hydrometeorological Ensemble Forecasting. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1 -26. doi: 10.1007/978-3-642-40457-3_30-1
Silin, I. and Spokoiny, V. (2018). Bayesian inference for spectral projectors of the covariance matrix, Electron. J. Statist. 12(1), 1948-1987. doi:10.1214/18-EJS1451; arXiv:1711.11532
Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L. and Moradkhani, H. (2018). Insights on the impact of systematic model errors on data assimilation performance in changing catchments, Advances in Water Resources, 113 (December 2017), 202-222. doi: 10.1016/j.advwatres.2017.12.006
Blanchard, G., Carpentier, A. and Gutzeit, M. (2018). Minimax Euclidean Separation Rates for Testing Convex Hypotheses in Rd. Electron. J. Statist. 12 (2): 3713-3735. doi:10.1214/18-EJS1472
Pathiraja, S., Moradkhani, H., Marshall, L., Sharma, A. and Geenens, G. (2018). Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation, Water Resources Research, 54(2), 1252-1280. doi: 10.1002/2018WR022627
Ni, B., Cao, X., Shprits, Y. Y., Summers, D., Gu, X., Fu, S. and Lou, Y. (2018). Hot Plasma Effects on the Cyclotron-Resonant Pitch-Angle Scattering Rates of Radiation Belt Electrons Due to EMIC Waves. Geophysical Research Letters, 45, 21-30. doi: 10.1002/2017GL07602
Locatelli, A., Carpentier, A., and Kpotufe, S. (2018). An Adaptive Strategy for Active Learning with Smooth Decision Boundary. Proceedings of Machine Learning Research (ALT), 83, 547-571. Open Access
Gribonval, R., Blanchard, G., Keriven, N. and Traonmilin, Y. (2017). Compressive Statistical Learning with Random Feature Moments.arXiv 1706.07180
Zhelavskaya, I. S., Shprits, Y. Y. and Spasojevic, M. (2017). Empirical modeling of the plasmasphere dynamics using neural networks. Journal of Geophysical Research: Space Physics, 122, 11227–11244. doi:10.1002/2017JA024406
Aseev, N. A., Shprits, Y. Y., Drozdov, A. Y., Kellerman, A. C., Usanova, M. E., Wang, D. and Zhelavskaya, I. S. (2017). Signatures of Ultrarelativistic Electron Loss in the Heart of the Outer Radiation Belt Measured by Van Allen Probes. Journal of Geophysical Research, 122, 10102-10111. doi: 10.1002/2017JA024485
Borovsky, J. E. and Shprits, Y. Y. (2017). Is the Dst Index Sufficient to Define All Geospace Storms?. Journal of Geophysical Research: Space Physics, 122, 11543-11547. doi:10.1002/2017JA024679
Taghvaei, A., de Wiljes, J., Mehta, P. G. and Reich, S. (2017). Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem. ASME Journal of Dynamical Systems, Measurement, and Control, 140(3), 030904. arXiv: 1702.07241; doi: 10.1115/1.4037780
Schütt, H. H., Rothkegel, L. O. M., Trukenbrod, H. A., Reich, S., Wichmann, F. A. and Engbert, R. (2017). Likelihood-based parameter estimation and comparison of dynamical cognitive models. Psychological Review, 124, 505-524. doi:10.1037/rev0000068