Publications
Birzhan Ayanbayev, Ilja Klebanov, Han Cheng Lie and T J Sullivan (2021). Gamma-convergence of Onsager–Machlup functionals: I. With applications to maximum a posteriori estimation in Bayesian inverse problems. Inverse Problems, Volume 38, Number 2, doi:10.1088/1361-6420/ac3f81.
Ba, Y., de Wiljes, J., Oliver, D.S., and Reich, S. (2021). Randomized maximum likelihood based posterior sampling, Computational Geosciences. doi: 10.1007/s10596-021-10100-y, arXiv:2101.03612
Lange, T. (2021): Derivation of Ensemble Kalman-Bucy Filters with unbounded nonlinear coefficients. Nonlinearity, Vol. 35, 1061. doi: 10.1088/1361-6544/ac4337
Pathiraja, S., Reich, S., and Stannat, W. (2021): McKean-Vlasov SDEs in nonlinear filtering. SIAM Journal on Control and Optimization. doi:10.1137/20M1355197, arXiv 2007.12658
Castillo Tibocha, A. M., de Wiljes, J., Shprits, Y. Y., & Aseev, N. A. (2021). Reconstructing the dynamics of the outer electron radiation belt by means of the standard and ensemble Kalman filter with the VERB-3D code. Space Weather, 19, e2020SW002672, doi: 10.1029/2020SW002672
Zhelavskaya, I. S., Aseev, N. A., and Shprits, Y. Y. (2021): A combined neural network- and physics-based approach for modeling plasmasphere dynamics. Journal of Geophysical Research: Space Physics, 126, e2020JA028077, doi: 10.1029/2020JA028077
Gottwald, G.A., and Reich, S. (2021). Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 31, 101103, doi:10.1063/5.0066080 arXiv:2108.03561
Pathiraja, S. and Stannat, W. (2021): Analysis of the feedback particle filter with diffusion map based approximation of the gain. Foundations of Data Science. doi:10.3934/fods.2021023 arXiv:2109.02761
Schindler, D., Moldenhawer, T., Stange, M., Lepro, V., Beta, C., Holschneider, M., and Huisinga, W. (2021). Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows. PLoS Comput Biol 17(8): e1009268. doi:journal.pcbi.1009268
R. De Heide, J. Cheshire, P. M ́enard, and A. Carpentier.Bandits with many optimal arms. In: Advances in Neural Information Processing Systems 34 (2021), pp. 22457–22469, 2021.
Geßner, H. (2021). Transparently Safeguarding Good Research Data Management with the Lean Process Assessment Model. In: E-Science-Tage 2021: Share Your Research Data. Heidelberg. DOI: 10.11588/heidok.00029719
Rabe, M. M., Chandra, J., Krügel, A., Seelig, S. A., Vasishth, S., & Engbert, R. (2021). A Bayesian approach to dynamical modeling of eye-movement control in reading of normal, mirrored, and scrambled texts. Psychological Review doi:10.1037/rev0000268, psyarXiv
Pasemann, G. and Flemming, S. and Alonso, S. and Beta, C. and Stannat, W. (2021): Diffusivity Estimation for Activator-Inhibitor Models: Theory and Application to Intracellular Dynamics of the Actin Cytoskeleton. Journal of Nonlinear Science 31, 59, doi:10.1007/s00332-021-09714-4 arXiv 2005.09421
Gottwald, G., and Reich, S. (2021). Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation. Physica D, Vol. 423, 132911. doi:10.1016/j.physd.2021.132911. arXiv:2007.07383
Wormell, C.L. and Reich, S. (2021): Spectral convergence of diffusion maps: Improved error bounds and an alternative normalisation. SIAM Journal Numerical Analysis,59, 1687-1734. arXiv 2006.02037; doi:10.1137/30M1344093
Hartung, N., Wahl, M., Rastogi, A., and Huisinga, W. (2021). Nonparametric goodness-of-fit tests for parametric covariate models in pharmacometric analyses. CPT Pharmacometrics & Systems Pharmacology 10: 564-576. ArXiv 2011.07539 DOI
Blanchard, G., Deshmukh, A., Dogan, U., Lee, G. and Scott, C. (2021). Domain Generalization by Marginal Transfer Learning. Journal of Machine Learning Research 22(2):1−55. Open Access
Zadorozhnyi, O., Gaillard, P., Gerchinovitz, S., and Rudi, A. (2021): Online nonparametric regression with Sobolev kernels. arxiv: 2102.03594
Lange, T. and Stannat W. (2021): Mean field limit of Ensemble Square Root filters - discrete and continuous time, Foundations of Data Science. doi: 10.3934/fods.2021003
Reich, S. and Weissmann, S. (2021). Fokker-Planck particle systems for Bayesian inference: Computational approaches, SIAM/ASA J. Uncertainty Quantification, 9(2), 446–482. doi: 10.1137/19M1303162; arXiv:1911.10832
Coghi, M., Torstein, N., Nuesken, N., and Reich, S. (2022). Rough McKean-Vlasov dynamics for robust ensemble Kalman filtering arXiv:2107.06621