Publications
Spokoiny, V. (2019). Bayesian inference for nonlinear inverse problems. arXiv:1912.12694
Cervantes, S., Shprits, Y. Y., Aseev, N., Drozdov, A., Castillo, A., and Stolle, C. (2020). Identifying radiation beltelectron source and loss processes by assimilating spacecraft data in a three-dimensional diffusionmodel. J. Geophys. Res.-Space, 125(1):1–16, doi:10.1029/2019JA027514
Engbert, R., Rabe, M.M., Seelig, S.A., and Reich, S. (2019): Bayesian parameter estimation for dynamical models of eye-movement control using adaptive Markov Chain Monte Carlo simulations. Forschung im HLRN-Verbund 2019.
Gugushvili, S., Mariucci, E. and Meulen, van der F. (2019). Decompounding discrete distributions: A non-parametric Bayesian approach. To appear in Scandinavian Journal of Statistics. arXiv: 1903.11142
Mariucci, E., Ray, K. and Szabó, B. (2019). A Bayesian nonparametric approach to log-concave density estimation. To appear in Bernoulli. arXiv: 1703.09531
Pathiraja, S. and Reich, S. (2019). Discrete gradients for computational Bayesian inference. Journal of Computational Dynamics, 6, 385-400. arXiv:1901.06300; doi: 10.3934/jcd.2019019
Geßner, H. & Kiy, A., (2019). A mobile campus application as a sensor node for Personal Learning Environments. In: Pinkwart, N. & Konert, J. (Hrsg.), DELFI 2019. Bonn: Gesellschaft für Informatik e.V.. (S. 187-192). DOI: 10.18420/delfi2019_356
Lange, T. and Stannat, W. (2019): On the continuous time limit of Ensemble Square Root Filters. arXiv 1910.12493
Spokoiny, V., and Panov, M. (2019). Accuracy of Gaussian approximation in nonparametric Bernstein–vonMises theorem. arXiv:1910.06028
Blanchard, G. and Zadorozhnyi, O. (2019). Concentration of weakly dependent Banach-valued sums and applications to statistical learning methods. Bernoulli, 25(4B), 3421-3458. doi:10.3150/18-BEJ1095 (arXiv: 1712.01934)
Castillo, A. M., Shprits, Y. Y., Ganushkina, N., Drozdov, A., Aseev, N., Wang, D. and Dubyagin, S. (2019). Simulations of the inner magnetospheric energetic electrons using the IMPTAM-VERB coupled model. Journal of Atmospheric and Solar-Terrestrial Physics. doi: 10.1016/j.jastp.2019.05.014
Malem-Shinitski, N., Seelig, S. A., Reich, S. and Engbert, R. (2019): Bayesian inference for an exploration-exploitation model of human gaze control. Conference on Cognitive Computational Neuroscience, 13-16 September 2019, Berlin, Germany (extended abstract). doi:10.32470/CCN.2019.1246-0
Seelig, S. A., Rabe, M. M., Malem-Shinitski, N., Reich, S., Engbert, R. (2019). Parameter estimation for the SWIFT model of eye-movement control during reading. Conference on Cognitive Computational Neuroscience, 13-16 September 2019, Berlin, Germany (extended abstract) doi:10.32470/CCN.2019.1369-0
Shcherbakov, R., Zhuang, J., Zöller, G. and Ogata, Y. (2019). Forecasting the magnitude of the largest expected earthquake, Nature Communications, 10, nr. 4051. doi: 10.1038/s41467-019-11958-4
Nuesken, N. and Reich, S. (2019). Note on Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler by Garbuno-Inigo, Hoffmann, Li and Stuart. arXiv:1908.10890
Houdebert, P. (2019). Phase transition of the non-symmetric Continuum Potts model. arXiv: 1908.10066
Avanesov, V. (2019). How to gamble with non-stationary X-armed bandits and have no regrets. arXiv:1908.07636
Avanesov, V. (2019). Structural break analysis in high-dimensional covariance structure. arXiv: 1803.00508
Cvetković N., Conrad T., and Lie H.C. (2019). Convergent discretisation schemes for transition path theory for diffusion processes (2019). SIAM Multiscale Modelling and Simulation 19(1), 242–266. doi.org/10.1137/20M1329354; arXiv:1907.05799
Avanesov, V. (2019). Nonparametric Change Point Detection in Regression. arXiv:1903.02603
Götze, F., Naumov, A., Spokoiny, V. and Ulyanov, V. (2019). Gaussian comparison and anti-concentration inequalities for norms of Gaussian random elements, Bernoulli, in print. arXiv:1708.08663
Lefakis, L., Zadorozhnyi, O. and Blanchard, G. (2019): Efficient Regularized Piecewise-Linear Regression Trees. arXiv: 1907.00275
Zadorozhnyi, O., Blanchard, G., and Carpentier, A. (2019): Restless dependent bandits with fading memory. arXiv: 1906.10454
Ty, A.J.A., Fang, Z., Gonzales, R.A., Rozdeba, P.J. and Abarbanel, H.D.I. (2019), Machine Learning of Time Series Using Time-delay Embedding and Precision Annealing. Neural Computation Vol. 31(10), 2004-2024. doi:10.1162/neco_a_01224. arXiv:1902.05062
Trukenbrod, H. A., Barthelmé, S., Wichmann, F. A. and Engbert, R. (2019). Spatial statistics for gaze patterns in scene viewing: Effects of repeated viewing, Journal of Vision, 19(6):5, 1-19. doi: 10.1167/19.6.5
Blanchard, G., Mathé, P., and Mücke, N. (2019): Lepskii Principle in Supervised Learning. arXiv: 1905.10764
Somogyvári, M. and Reich, S. (2019). Convergence tests for transdimensional Markov chains in geoscience imaging, Math Geosci, 2019. doi: 10.1007/s11004-019-09811-x
Nüsken, N., Reich, S. and Rozdeba, P. J. (2019). State and parameter estimation from observed signal increments, Entropy, Vol. 21(5), 505. arXiv:1903.10717 ; doi: 10.3390/e21050505
Lontsi, A. M., García-Jerez, A., Molina-Villegas, J. C., Sánchez-Sesma, F. J., Molkenthin, C., Ohrnberger, M., Krüger, F., Wang, R. and Fäh, D. (2019). A generalized theory for full microtremor horizontal-to-vertical [H/V(z, f)] spectral ratio interpretation in offshore and onshore environments, Geophysical Journal International, 218(2), 1276–1297. doi: 10.1093/gji/ggz223 arXiv: 1907.04606
Achddou, J., Lam-Weil, J., Carpentier, A. and Blanchard, G. (2019). A minimax near-optimal algorithm for adaptive rejection sampling. Proceedings of the 30th International Conference on Algorithmic Learning Theory, PMLR 98:94-126, 2019. Open Access
Reich, S. (2019): Data assimilation: The Schrödinger perspective. Acta Numerica, 28, 635-711. arXiv:1807.08351; doi:10.1017/S0962492919000011
Locatelli, A., Carpentier, A., and Valko, M. (2019). Active multiple matrix completion with adaptive confidence sets. Proceedings of Machine Learning Research, PMLR, 89, 1783-1791. Open Access
Seznec, J, Locatelli, A., Carpentier, A., Lazaric, A., and Valko, M. (2019): Rotting bandits are no harder than stochastic ones. Proceedings of Machine Learning Research, in PMLR 89:2564-2572. Open Access
Leeuwen, P. J. v., Künsch, H.-R., Nerger, L., Potthast, R. and Reich, S. (2019): Particle filters for high-dimensional geoscience applications: a review. Quarterly J Royal Meteorlog. Soc., 145, 2335-2365. arXiv: 1807.10434v2 doi: 10.1002/qj.3551
Wahl, M. (2019): A note on the prediction error of principal component regression.arXiv: 1811.02998
Katz-Samuels, J., Blanchard, G. and Scott, C. (2019). Decontamination of Mutual Contamination Models. Journal of Machine Learning Research (41):1−57, 2019 Open Access
Carpentier, A., Duval, C., and Mariucci, E. (2019): Total variation distance for discretely observed Lévy processes: a Gaussian approximation of the small jumps. arXiv: 1810.02998
Aseev, N. A. and Shprits, Y. Y. (2019). Reanalysis of ring current electron phase space densities using Van AllenProbe observations, convection model, and log-normal Kalman Filter. Space Weather, 17(4):619–638, doi:10.1029/2018SW002110
Salamat, M., Zöller, G. and Amini, M. (2019). Prediction of the Maximum Expected Earthquake Magnitude in Iran: From a Catalog with Varying Magnitude of Completeness and Uncertain Magnitudes, Pure and Applied Geophysics, 176 (8): 3425–3438. doi: 10.1007/s00024-019-02141-3
Rothkegel, L. O., Schütt, H. H., Trukenbrod, H. A., Wichmann, F. A. and Engbert, R. (2019). Searchers adjust their eye-movement dynamics to target characteristics in natural scenes. Scientific Reports, 9, article no. 1635. doi: 10.1038/s41598-018-37548-w
Opper, M. (2019). Variational inference for stochastic differential equations. Ann. Phys., 531(3):1800233, doi:10.1002/andp.201800233
Duval, C. and Mariucci, E. (2019): Compound Poisson approximation to estimate the Lévy density. arXiv: 1702.08787
Aseev, N. A., Shprits, Y. Y., Wang, D., Wygant, J., Drozdov, A. Y., Kellerman, A. C., and Reeves, G. D. (2019). Transport and loss of ring current electrons inside geosynchronous orbit during the 17 March 2013 storm. J. Geophys. Res.-Space, 124(2):915–933. doi:10.1029/2018JA026031
Blanchard, G., Neuvial, P. and Roquain, E. (2019). Post hoc inference via joint family-wise error rate control. (to appear in Annals of Statistics) arXiv: 1703.02307