• Moldenhawer, T., Moreno, E., Schindler, D., Flemming, S., Holschneider, M., Huisinga, W., Alonso, S. and Beta, C. (2022). Spontaneous transitions between amoeboid and keratocyte-like modes of migration. Front. Cell Dev. Biol., 10:898351. doi:10.3389/fcell.2022.898351

  • Schindler, D., Moldenhawer, T., Beta, C., Huisinga, W. and Holschneider, M. (2022). Three-component contour dynamics model to simulate and analyze amoeboid cell motility. arXiv:2210.12978

  • Yochelis, A., Flemming, S. and Beta, C. (2022). Versatile Patterns in the Actin Cortex of Motile Cells: Self-Organized Pulses Can Coexist with Macropinocytic Ring-Shaped Waves. Phys. Rev. Lett., 129:088101. doi: 10.1103/PhysRevLett.129.088101

  • Schwetlick, L.; Backhaus, D. & Engbert, R. (2022). A dynamical scan-path model for task-dependence during scene viewing. Psychological Review, American Psychological Association (APA). doi: 10.1037/rev0000379

  • Vilk, O., Aghion, E., Avgar, T., Beta, C., Nagel, O., Sabri, A., Sarfati, R., Schwartz, D., Weiss, M., Krapf, D., Nathan, R., Metzler, R. and Assaf, M. (2022) Unravelling the origins of anomalous diffusion: From molecules to migrating storks. Phys. Rev. Research, 4:033055. doi: 10.1103/PhysRevResearch.4.033055

  • Riedel, C., Geßner, H., Seegebrecht, A., Ayon, S. I., Chowdhury, S. H., Engbert, R. and Lucke, U. (2022). Including Data Management in Research Culture Increases the Reproducibility of Scientific Results. In: Demmler, D., Krupka, D. & Federrath, H. (Hrsg.), INFORMATIK 2022. Gesellschaft für Informatik, Bonn. (S. 1341-1352). doi: 10.18420/inf2022_114

  • Moreno, E., Grossmann, R., Beta, C., and Alonso, S. (2022). From Single to Collective Motion of Social Amoebae: A Computational Study of Interacting Cells. Front. Phys., 9:750187. doi: 10.3389/fphy.2021.750187

  • Maoutsa, D. and Opper, M. (2022). Deterministic particle flows for constraining stochastic nonlinear systems, Phys. Rev. Res., 4, 043035, doi:10.1103/PhysRevResearch.4.043035

  • Lie, H. C. and Stahn, M. and Sullivan, T.J. (2022). Randomised one-step time integration methods for deterministic operator differential equations. Calcolo, Volume 59, Number 13, ArXiv 2103.16506doi: 10.1007/s10092-022-00457-6.

  • Gaucher, S., Carpentier, A., & Giraud, C. (2022). The price of unfairness in linear bandits with biased feedback. Advances in Neural Information Processing Systems, 35, 18363-18376.

  • Reich, S. (2022): Data assimilation: A dynamic homotopy-based coupling approacharXiv 2209.05279

  • Winkler, L., Ojeda, C., and Opper, M. (2022). A Score-Based Approach for Training Schrödinger Bridges for Data Modelling, Entropy, 25, 316, doi:10.3390/e25020316

  • Huang, D.Z., Huang, J., Reich, S., and Stuart, A.M. (2023). Efficient derivative-free Bayesian inference for large-scale inverse problems. Inverse Probelms, Vol. 38, 125006. doi: 10.1088/1361-6420/ac99faarXiv:2204.04386

  • Pidstrigach, J. (2022). Score-based generative models detect manifolds. In: Advances in Neural Information Processing Systems, Volume 35. arXiv:2206.01018

  • Pidstrigach, J. (2022). Convergence of preconditioned Hamiltonian Monte Carlo on Hilbert spaces, IMA Journal of Numerical Analysis. doi: 10.1093/imanum/drac052arXiv:2011.08578

  • Reich, S. (2022). Frequentist perspective on robust parameter estimation using the ensemble Kalman filter In: Chapron, B., Crisan, D., Holm, D., Mémin, E., Radomska, A. (eds) Stochastic Transport in Upper Ocean Dynamics. STUOD 2021. Mathematics of Planet Earth, vol 10. Springer, Cham. doi: 10.1007/978-3-031-18988-3_15 arXiv:2201.000611

  • Calvello, E., Reich, S. and Stuart A.M.(2022): Ensemble Kalman methods: A mean field approacharXiv 2209.11371

  • Pfeifer, V., Beier, S., Alirezaeizanjani, Z., and Beta, C. (2022): Role of the two flagellar stators in swimming motility of Pseudomonas putida. Mbio 13(6) e02182-22, doi: 10.1128/mbio.02182-22.

  • Alqahtani, A., Mach, T., and Reichel, L. (2023). Solution of Ill-posed Problems with Chebfun. Numerical Algorithms (2023). doi:10.1007/s11075-022-01390-z​​​​​​​, arXiv 2007.16137

  • Zöller, G. (2022): A note on the estimation of the maximum possible earthquake magnitude based on extreme value theory for the Groningen gas field. Bulletin of the Seismological Society of America, Vol. 112(4), 1825-1831. doi:10.1785/0120210307

  • Boether, M., Kißig, O., Taraz, M., Cohen, S., Seidel, K., and Friedrich, T. (2022). Whats Wrong with Deep Learning in Tree Search for Combinatorial Optimization. In: International Conference on Learning Representations. arXiv:2201.10494

  • Altmeyer, R., Bretschneider, T., Janák, J. and Reiß, M. (2022): Parameter Estimation in an SPDE Model for Cell Repolarisation. SIAM/ASA Journal on Uncertainty Quantification 10(1), 179-199. doi:10.1137/20M1373347

  • Pidstrigach, J. and Reich, S. (2022). Affine-invariant ensemble transform methods for logistic regression. Foundation of Computational Mathematics, 22. doi:10.10007/s10208-022-09550-2.

  • Molkenthin, C., Donner, C., Reich, S., Zöller, G., Hainzl, S., Holschneider, M. and Opper, M. (2022): GP-ETAS: Semiparametric Bayesian inference for the spatio-temporal Epidemic Type Aftershock Sequence model. Statistics and Computation, Vol. 32, 29. doi:10.1007/s11222-022-10085-3.

  • Huang, D.Z., Huang, J., Reich, S., and Stuart, A.M. (2022). Efficient derivative-free Bayesian inference for large-scale inverse problemsarXiv:2204.04386.

  • Engbert, R., Rabe, M. M., Schwetlick, L., Seelig, S. A., Reich, S., Vasishth, S. (2022). Data assimilation in dynamical cognitive science. Trends in Cognitive Sciences, 26(2), 99-102. doi:10.1016/j.tics.2021.11.006.

  • Malem-Shinitski, N., Ojeda, C., and Opper, M. (2022). Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects. Entropy, 24(3), 356. doi: 10.3390/e24030356.

  • Mach, T., Reichel, L., and Van Barel, M. (2023). Adaptive cross approximation for Tikhonov regularization in general form. Numerical Algorithms. doi:10.1007/s11075-022-01395-8, arXiv 2204.05740

  • Gaudlitz, S. and Reiß, M. (2022): Estimation for the reaction term in semi-linear SPDEs under small diffusivity. arXiv:2203.10527

  • Pathiraja, S., and van Leeuwen, P. J. (2022): Multiplicative non-Gaussian model error estimation in data assimilation. Journal of Advances in Modeling Earth Systems, 14, e2021MS002564. doi: 10.1029/2021MS002564

  • Ruchi, S., Dubinkina, S. and de Wiljes, J. (2021): Fast hybrid tempered ensemble transform filter for Bayesian elliptical problems via Sinkhorn approximation. Nonlinear Processes in Geophysics, 28(1): 23-41. doi: 10.5194/npg-28-23-2021