Publications
Pathiraja, S. (2023): L2 convergence of smooth approximations of Stochastic Differential Equations with unbounded coefficients. Stochastic Analysis and Applications, 42, 354-369. doi: 0.1080/07362994.2023.2260863
Coghi, M., Torstein, N., Nuesken, N., and Reich, S. (2023). Rough McKean-Vlasov dynamics for robust ensemble Kalman filtering, The Annals of Applied Probability, Volume 33, 5693-5752 doi: 10.1214/23-AAP1957
Boege, T., Fritze, R., Görgen, C., Hanselman, J., Iglezakis, D., Kastner, L., Koprucki, T., Krause, T. H., Lehrenfeld, C., Polla, S., Reidelbach, M., Riedel, C., Saak, J., Schembera, B., Tabelow, K., & Weber, M. (2023). Research-data management planning in the German mathematical community. European Mathematical Society Magazine. doi: 10.4171/mag/152
Gaudlitz, S. and Reiß, M. (2023). Estimation for the reaction term in semi-linear SPDEs under small diffusivity. Bernoulli 29(4): 3033-3058 (November 2023). doi:10.3150/22-BEJ1573arXiv:2203.10527
Stankewitz, B. and Mücke, N. and Rosasco, L. (2023). From inexact optimization to learning via gradient concentration. Computational Optimization and Applications 84:265-294. arXiv:2106.05397.
Boys, B., Girolami, M., Pidstrigach, J., Reich, S., Mosca, A., and Akyildiz, O.D. (2023). Tweedie Moment Projected Diffusions For Inverse Problems, Transactions on Machine Learning Research, arXiv 2310.06721
Spokoiny, V. (2023). Dimension free non-asymptotic bounds on the accuracy of high dimensional Laplace approximation, SIAM/ASA Journal on Uncertainty Quantification, 11, 1044-1068, arXiv:2204.11038
Spokoiny, V. (2023). Inexact Laplace approximation and the use of posterior mean in Bayesian inference, Bayesian Anal., 1-28, doi:10.1214/23-BA1391
Riedel, C., Wiepke, A., Jacob, B., Hartmann, N., and Ulrike, L. (2023). Recommendations for Using Data Management Plans in Academic Research Data Management Training. 10. Fachtagung Hochschuldidaktik Informatik (HDI) 2023 - Conference Proceedings, 145–152. doi: 10.5281/zenodo.10255524.
Beta, C., Edelstein-Keshet, L., Gov, N. and Yochelis, A. (2023). From actin waves to mechanism and back: How theory aids biological understanding. eLife, 12:e87181, doi: 10.7554/eLife.87181
Freitag, M.A., Nicolaus, J.M., and Redmann, M. (2023). Model order reduction methods applied to neural network training. Proceedings in Applied Mathematics and Mechanics, e202300078. doi: 10.1002/pamm.202300078
Freitag, M.A., Kriz, P., Mach, T, and Nicolaus, J.M. (2023). Can one hear the depth of the water? Proceedings in Applied Mathematics and Mechanics, e202300122. doi: 10.1002/pamm.202300122
König, J. and Freitag, M.A. (2023). Time-Limited Balanced Truncation for Data Assimilation Problems. Journal of Scientific Computing, Volume 97, Number 47. doi: 10.1007/s10915-023-02358-4
König, J. and Freitag, M.A. (2023). Time-limited Balanced Truncation within Incremental Four-Dimensional Variational Data Assimilation. Proceedings in Applied Mathematics and Mechanics, e202300019. doi: 10.1002/pamm.202300019
Reich, S. (2024): Data Assimilation: A Dynamic Homotopy-Based Coupling Approach. In: Chapron, B., Crisan, D., Holm, D., Mémin, E., Radomska, A. (eds) Stochastic Transport in Upper Ocean Dynamics II. STUOD 2022. Mathematics of Planet Earth, vol 11. Springer, Cham. doi: 10.1007/978-3-031-40094-0_12
Zöller, G. and Hainzl, S. (2023). Seismicity scenarios for the remaining operating period of the gas field in Groningen, Netherlands. Seismological Research Letters, Vol. 94(2A), 805-812. doi:10.1785/0220220308
Sharma, S., Hainzl, S., and Zöller, G. (2023): Seismicity parameter dependence on mainshock induced co-seismic stress. Geophysical Journal International, Vol. 135(1), 509-517. doi:10.1093/gji/ggad201
Maleki Asayesh,B., Hainzl, S., Zöller, G. (2023): Depth‐Dependent Aftershock Trigger Potential Revealed by 3D‐ETAS Modeling. Journal of Geophysical Research, Vol. 128(6), e2023JB026377. doi:10.1029/2023JB026377
Hijazi, S., Freitag, M. A., and Landwehr, N. (2023). POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier-Stokes equations. Adv. Model. Simul. Eng. Sci. doi: 10.1186/s40323-023-00242-2
Altmeyer, R., Cialenco, I. and Pasemann, G. (2023): Parameter estimation for semilinear SPDEs from local measurements. Bernoulli 29(3): 2035-2061. doi:10.3150/22-BEJ1531
Cialenco, I. and Kim, H.-J. and Pasemann, G. (2023): Statistical analysis of discretely sampled semilinear SPDEs: a power variation approach. Stoch PDE: Anal Comp doi:10.1007/s40072-022-00285-3
Kim, J. W. and Mehta, P. G. (2023): Duality for Nonlinear Filtering II: Optimal Control. IEEE Transactions on Automatic Control. doi: 10.1109/TAC.2023.3279208
Kim, J. W. and Mehta, P. G. (2023): Duality for Nonlinear Filtering I: Observability. IEEE Transactions on Automatic Control. doi: 10.1109/TAC.2023.3279206
Ayanbayev, B., Klebanov, I., Lie, H.C., and Sullivan, T.J. (2021). Gamma-convergence of Onsager–Machlup functionals: II. convergence of Onsager–Machlup functionals: II. Infinite product measures on Banach spaces. Inverse Problems, Volume 38, Number 2. doi:10.1088/1361-6420/ac3f82.
Redmann, M. and Freitag, M.A. (2021). Optimization based model order reduction for stochastic systems. Appl. Math. Comput., 398. doi: 10.1016/j.amc.2020.125783
Lie, H.C., Stahn, M. and Sullivan, T.J. (2022). Randomised one-step time integration methods for deterministic operator differential equations. Calcolo, Volume 59, Number 13. doi:10.1007/s10092-022-00457-6.
Freitag, M.A. and Reich, S. (2022). Datenassimilation: Die nahtlose Verschmelzung von Daten und Modellen. Mitteilungen der Deutschen Mathematiker-VereinigungVerlag, De GruyterSeiten, 108‒112, Band 30. doi: 10.1515/dmvm-2022-0037
Dietrich, F., Makeev, A., Kevrekidis, G., Evangelou, N., Bertalan, T., Reich, S., and Kevrekidis, I.G. (2023). Learning effective stochastic differential equations from microscopic simulations: combining stochastic numerics and deep learning. Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 33, 023121. doi: 10.1063/5.0113632, arXiv:2106.09004
Kemeth, F., Alonso, S., Echebarria, B., Moldenhawer, T., Beta, C. and Kevrekidis I. (2023). Black and Gray Box Learning of Amplitude Equations: Application to Phase Field Systems. Phys. Rev. E, 107:025305 doi: 10.1103/PhysRevE.107.025305
Yadav, H., Smith, G., Reich, S., and Vasishth, S. (2023). Number feature distortion modulates cue-based retrieval in reading. Journal of Memory and Language, Vol. 129, 104400. doi: 10.1016/j.jml.2022.104400