• V. Avanesov (2019). Nonparametric Change Point Detection in Regression. arXiv:1903.02603

  • J. Katz-Samuels, G. Blanchard, C. Scott (2019). Decontamination of Mutual Contamination Models. To appear in Journal of Machine Learning Research. Arxiv 1710.01167

  • G. Blanchard, N. Mücke (2018). Parallelizing Spectral Algorithms for Kernel Learning. Journal of Machine Learning Research (30):1-29, 2018. Open Access

  • G. Blanchard, A. Deshmukh, U. Dogan, G. Lee, C. Scott (2017). Domain Generalization by Marginal Transfer Learning. Arxiv 1711.07910

  • R. Gribonval, G. Blanchard, N. Keriven, Y. Traonmilin (2017). Compressive Statistical Learning with Random Feature Moments.Arxiv 1706.07180

  • A. Rastogi, G. Blanchard, P. Mathé (2019). Convergence analysis of Tikhonov regularization for non-linear statistical inverse learning problems.ArXiv 1902.05404

  • G. Blanchard, P. Neuvial, E. Roquain (2018). Post hoc inference via joint family-wise error rate control.Arxiv 1703.02307

  • M. Reiß, M. Wahl (2019). Non-asymptotic upper bounds for the reconstruction error of PCA. Annals of Statistics, to appear. ArXiv 1609.03779

  • M. Wahl (2018). A note on the prediction error of principal component regression.ArXiv 1811.02998

  • M. Jirak, M. Wahl (2018). Relative perturbation bounds with applications to empirical covariance operators.ArXiv 1802.02869

  • M. Jirak, M. Wahl (2018). Perturbation bounds for eigenspaces under a relative gap condition.ArXiv 1803.03868

  • G. Blanchard, M. Hoffmann, M. Reiß (2018). Optimal adaptation for early stopping in statistical inverse problems. SIAM/ASA Journal on Uncertainty Quantification 6(3): 1043-1075. ArXiv 1606.07702DOI

  • Pathiraja, S. and Reich, S. (2019). Discrete gradients for computational Bayesian inference. arXiv:1901.06300

  • de Wiljes, J., Pathiraja, S. and Reich, S. (2019). Algorithms for high-dimensional non-linear filtering and smoothing problems. arXiv:1901.06300

  • Lange, T., and Stannat, W. (2018).  On the continuous time limit of the Ensemble Kalman Filter. ArXiv 1901.05204v1

  • J. Achdou, J. Lam, A. Carpentier, G. Blanchard (2019). A minimax near-optimal algorithm for adaptive rejection sampling. Accepted for ALT'2019. Arxiv 1810.09390

  • G. Blanchard, A. Carpentier, M. Gutzeit (2018). Minimax Euclidean Separation Rates for Testing Convex Hypotheses in Rd. Electron. J. Statist. 12 (2): 3713-3735. Open Access

  • F. Bachoc, G. Blanchard, P. Neuvial (2018). On the post selection inference constant under restricted isometry properties. Electron. J. Statist. 12(2): 3736-3757. Open access

  • Fiedler, B., Zöller, G., Holschneider, M., Hainzl, S. (2018). Multiple Change‐Point Detection in Spatiotemporal Seismicity Data. Bulletin of the Seismological Society of America (2018) 108 (3A): 1147-1159. https://doi.org/10.1785/0120170236.

  • G. Blanchard, M. Hoffmann, M. Reiß (2018). Early stopping for statistical inverse problems via truncated SVD estimation. Electron. J. Statist. 12 (2):3204-3231. ArXiv 1710.07278DOI

  • N. A. Aseev, Y. Y. Shprits, A. Y. Drozdov, A. C. Kellerman, M. E. Usanova, D. Wang, I. S. Zhelavskaya (2017). Signatures of Ultrarelativistic Electron Loss in the Heart of the Outer Radiation Belt Measured by Van Allen Probes. Journal of Geophysical Research, 122, 10102-10111. doi: 10.1002/2017JA024485

  • B. Ni, X. Cao, Y. Y. Shprits, D. Summers, X. Gu, S. Fu, Y. Lou (2018). Hot Plasma Effects on the Cyclotron-Resonant Pitch-Angle Scattering Rates of Radiation Belt Electrons Due to EMIC Waves. Geophysical Research Letters, 45, 21-30. doi: 10.1002/2017GL07602

  • S. Makowski, L. Jäger, A. Abdelwahab, N. Landwehr and T. Scheffer (2018). A discriminative model for identifying readers and assessing text comprehension from eye movements. Proceedings of the European Conference on Machine Learning (ECML-2018). Free PDF

  • S. Risse and S. Seelig (2018). Stable Preview Difficulty Effects. Quarterly Journal of Experimental Psychology. doi: 10.17605/OSF.IO/KZ483

  • S. Alonso, M. Stange and C. Beta (2018). Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells. PLoS ONE, 13(8): e0201977. doi: 10.1371/journal.pone.0201977

  • M. Morzfeld and S. Reich (2018). Data assimilation: mathematics for merging models and data. Snapshots of modern mathematics from Oberwolfach, 11. doi: 10.14760/SNAP-2018-011-EN

  • G. Zöller (2018). A Statistical Model for Earthquake Recurrence Based on the Assimilation of Paleoseismicity, Historic Seismicity, and Instrumental Seismicity. Journal of Geophysical Research: Solid Earth, 123, 4906-4921. doi: 10.1029/2017JB015099

  • Pathiraja, S. and van Leeuwen, P.J. (2018) Model uncertainty estimation in data assimilation for multi-scale systems with partially observed resolved variables, Quarterly Journal of the Royal Meteorological Society, under review, http://arxiv.org/abs/1807.09621

  • J. de Wiljes, S. Reich and W. Stannat (2018). Long-Time Stability and Accuracy of the Ensemble Kalman--Bucy Filter for Fully Observed Processes and Small Measurement Noise. SIAM Journal on Applied Dynamical Systems, 17, 1152-1181. doi: 10.1137/17M1119056 (free PDF)

  • H. H. Schütt, L. O. M. Rothkegel, H. A. Trukenbrod, S. Reich, F. A. Wichmann and R. Engbert (2017). Likelihood-based parameter estimation and comparison of dynamical cognitive models. Psychological Review, 124, 505-524. doi:10.1037/rev0000068 

  • G. Blanchard, M. Hoffmann and M. Reiß (2017). Early stopping for statistical inverse problems via truncated SVD estimation. arXiv:1710.07278

  • P.J. van Leeuwen, H.-R. Kuensch, L. Nerger, R. Potthast and S. Reich, Particle filters for applications in geosciences. technical report, arXiv:1807.10434

  • G. Blanchard and O. Zadorozhnyi (2017). Concentration of weakly dependent Banach-valued sums and applications to kernel lerning methods. arXiv:1712.01934

  • G. Blanchard, M. Hoffmann and M. Reiß (2017). Optimal adaptation for early stopping in statistical inverse problems. arXiv:1606.07702

  • J. de Wiljes, W. Acevedo and S. Reich (2017). A second-order accurate ensemble transform particle filter. SIAM Journal on Scientific Computing, 39, A1834-A1850. doi:10.1137/16M1095184 (arXiv:1608.08179)

  • D. Angwenyi, J. de Wiljes and S. Reich (2017). Interacting particle filters for simultaneous state and parameter estimation. arXiv:1709.09199

  • I. S. Zhelavskaya, Y. Y. Shprits and M. Spasojevic (2017). Empirical modeling of the plasmasphere dynamics using neural networks. Journal of Geophysical Research: Space Physics, 122, 11227–11244. doi:10.1002/2017JA024406

  • A. Taghvaei, J. de Wiljes, P. G. Mehta and S. Reich (2017). Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem. ASME Journal of Dynamical Systems, Measurement, and Control, 140(3), 030904. doi:10.1115/1.4037780 (arXiv:1702.07241)

  • J. E. Borovsky and Y. Y. Shprits (2017). Is the Dst Index Sufficient to Define All Geospace Storms?. Journal of Geophysical Research: Space Physics, 122, 11543-11547. doi:10.1002/2017JA024679

     

  • J. de Wiljes, S. Reich and W. Stannat (2017). Long-time stability and accuracy of the ensemble Kalman-Bucy filter for fully observed processes and smallmeasurement noise. arXiv:1612.06065